The antimicrobial activity of essential oils (EOs) of cinnamon (Cinnamon zeylanicum), clove (Syzygium aromaticum), basil (Ocimum basillicum), rosemary (Rosmarinus officinalis), dill (Anethum graveolens), and ginger (Zingiber officinalis) was evaluated over a range of concentrations in two types of contact tests (solid and vapor diffusion). The EOs were tested against an array of four Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, and Listeria monocytogenes), four Gram-negative bacteria (Escherichia coli, Yersinia enterocolitica, Salmonella choleraesuis, and Pseudomonas aeruginosa), and three fungi (a yeast, Candida albicans, and two molds, Penicillium islandicum and Aspergillus flavus). The rationale for this work was to test the possibility of creating a protective atmosphere by using natural compounds that could extend the shelf life of packaged foodstuffs while minimizing organoleptic alterations. In the solid diffusion tests, cinnamon and clove gave the strongest (and very similar) inhibition, followed by basil and rosemary, with dill and ginger giving the weakest inhibition. The fungi were the most sensitive microorganisms, followed by the Gram-positive bacterial strains. The Gram-negative strain P. aeruginosa was the least inhibited. The composition of the atmosphere generated by the EOs, and their minimum inhibitory concentrations (MICs), were determined using a disk volatilization method, in which no inhibition from rosemary or basil was observed. Cinnamon and clove, once again, gave similar results for every microorganism. As a general rule, MIC (fungi) << MIC (bacteria) with no clear differences between Gram-positive or -negative strains except for P. aeruginosa, which was not inhibited by any of the EOs in the vapor phase. The atmosphere generated from the EOs was analyzed by means of solid-phase microextraction combined with gas chromatography-ion trap mass spectrometry. Differences among the volatiles in the EOs, which may be responsible for the differences in their antimicrobial performances, were found.
The aim of the study presented here was to gain knowledge about the vapor-phase antimicrobial activity of selected essential oils and their major putatively active constituents against a range of foodborne bacterial and fungal strains. In a first step, the vapor-phase antimicrobial activities of three commercially available essential oils (EOs)-cinnamon (Cinnamomum zeylanicum), thyme (Thymus vulgaris), and oregano (Origanum vulgare)-were evaluated against a wide range of microorganisms, including Gram-negative bacteria (Escherichia coli, Yersinia enterocolitica, Pseudomonas aeruginosa, and Salmonella choleraesuis), Gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis), molds (Penicillium islandicum and Aspergillus flavus), and a yeast (Candida albicans). The minimum inhibitory concentrations (MICs) were generally lower for oregano EO than for the thyme and cinnamon EOs, especially against the relatively resistant Gram-negative. The persistence of the EOs' antimicrobial activities over time was assessed, and changes in the composition of the atmosphere they generated over time were determined using single-drop microextraction (SDME) in combination with gas chromatography-mass spectrometry (GC-MS) and subsequent analysis of the data by principal component analysis (PCA). More relevant chemicals were selected. In addition, the vapor-phase activities of putatively key constituents of the oils were screened against representative Gram-positive (L. monocytogenes) and Gram-negative (S. choleraesuis) bacteria, a mold (A. flavus), and a yeast (C. albicans). Of the tested compounds, cinnamaldehyde, thymol, and carvacrol showed the strongest antimicrobial effectiveness, so their MICs, defined as the minimum vapor concentrations that completely inhibited detectable growth of the microorganisms, were calculated. To check for possible interactions between components present in the EOs, cinnamon EO was fortified with cinnamaldehyde and thyme EO with thymol, and then the antimicrobial activities of the fortified oils were compared to those of the respective unfortified EOs using fractional inhibitory concentration (FIC) indices and by plotting inhibition curves as functions of the vapor-phase concentrations. Synergistic effects were detected for cinnamaldehyde on A. flavus and for thymol on L. monocytogenes, S. choleraesuis, and A. flavus. In all other cases the fortification had additive effects, except for cinnamaldehyde's activity against S. choleraesuis, for which the effect was antagonistic. Finally, various microorganisms were found to cause slight changes over time to the atmospheres generated by all of the EOs (fortified and unfortified) except the fortified cinnamon EO.
The antimicrobial activity in the vapor-phase of laboratory-made flexible films of polypropylene (PP) and polyethylene/ethylene vinyl alcohol copolymer (PE/EVOH) incorporating essential oil of cinnamon ( Cinnamomum zeylanicum), oregano ( Origanum vulgare), clove ( Syzygium aromaticum), or cinnamon fortified with cinnamaldehyde was evaluated against a wide range of microorganisms: the Gram-negative bacteria Escherichia coli, Yersinia enterocolitica, Pseudomonas aeruginosa, and Salmonella choleraesuis; the Gram-positive bacteria Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis; the molds Penicillium islandicum, Penicillium roqueforti, Penicillium nalgiovense, Eurotium repens, and A spergillus flavus and the yeasts Candida albicans, Debaryomyces hansenii, and Zigosaccharomyces rouxii. Films with a nominal concentration of 4% (w/w) of fortified cinnamon or oregano essential oil completely inhibited the growth of the fungi; higher concentrations were required to inhibit the Gram-positive bacteria (8 and 10%, respectively), and higher concentrations still were necessary to inhibit the Gram-negative bacteria. PP films were more effective than PE/EVOH films. The atmospheres generated by the antimicrobial films inside Petri dishes were quantitatively analyzed using headspace-single drop microextraction (HS-SDME) in combination with gas chromatography-mass spectrometry (GC-MS). The analyses showed that the oregano-fortified PP films released higher levels of carvacrol and thymol, and the cinnamon-fortified PP films released higher levels of cinnamaldehyde, during the first 3-6 h of incubation, than the corresponding PE/EVOH films. Shelf-life tests were also performed, demonstrating that the antifungal activities of the films persisted for more than two months after their manufacture. In addition, migration tests (overall and specific) were performed, using both aqueous and fatty simulants, to ensure that the films meet EU regulations regarding food contact materials. Following contact with the tested films, the substances that had migrated into the aqueous simulants were recovered by direct immersion-single drop extraction (DI-SDME) and then analyzed by GC-MS. The fatty stimulant (isooctane) was directly injected into the chromatographic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.