The coordination of the chiral metalloporphyrin ([5,10,15,20-[4-([Formula: see text]-2-[Formula: see text]-octadecylamidoethyloxiphenyl]porphyrin] zinc (II)) and an achiral homologue to an amphiphilic block copolymer of poly(styrene-[Formula: see text]-4-vinyl pyridine) (PS-[Formula: see text]-P4VP) have been studied in solution and as cast material. The resulting chiral dye-polymer hybrid material has been accomplished via axial coordination between the zinc (II) metal ion in the core of the porphyrin ring and the pyridyl units of the block-copolymer in a non-coordinative solvent. The supramolecular organization and possible chirality transfer to the hybrid material have been studied in solution by UV-visible absorption spectroscopy, fluorescence spectroscopy, Nuclear Magnetic Resonance and Circular Dichroism. The morphology of the chiral and achiral doped polymers has been studied in solid state by Transmission Electron Microscopy and Atomic Force Microscopy. We show that the nanostructures formed depend greatly upon the nature of the side-chains on the porphyrins, where a chiral group leads to a very homogeneous phase-separated material, perhaps indicating that chiral side groups are useful for the preparation of this type of supramolecular hybrid.
Forming gel- or xerogel-based materials by associating several components has increasingly focused the attention of chemists over the last decade. It constitutes a valuable strategy to access gels with tailored...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.