The online version of this article contains a supplementary appendix. BackgroundThe diagnosis of myelodysplastic syndromes is not always straightforward when patients lack specific diagnostic markers, such as blast excess, karyotype abnormality, and ringed sideroblasts. Design and MethodsWe designed a flow cytometry protocol applicable in many laboratories and verified its diagnostic utility in patients without those diagnostic markers. The cardinal parameters, analyzable from one cell aliquot, were myeloblasts (%), B-cell progenitors (%), myeloblast CD45 expression, and channel number of side scatter where the maximum number of granulocytes occurs. The adjunctive parameters were CD11b, CD15, and CD56 expression (%) on myeloblasts. Marrow samples from 106 control patients with cytopenia and 134 low-grade myelodysplastic syndromes patients, including 81 lacking both ringed sideroblasts and cytogenetic aberrations, were prospectively analyzed in Japan and Italy. ResultsData outside the predetermined reference range in 2 or more parameters (multiple abnormalities) were common in myelodysplastic syndromes patients. In those lacking ringed sideroblasts and cytogenetic aberrations, multiple abnormalities were observed in 8/26 Japanese (30.8%) and 37/55 Italians (67.3%) when the cardinal parameters alone were considered, and in 17/26 Japanese (65.4%) and 42/47 Italians (89.4%) when all parameters were taken into account. Multiple abnormalities were rare in controls. When data from all parameters were used, the diagnostic sensitivities were 65% and 89%, specificities were 98% and 90%, and likelihood ratios were 28.1 and 8.5 for the Japanese and Italian cohorts, respectively. ConclusionsThis protocol can be used in the diagnostic work-up of low-grade myelodysplastic syndromes patients who lack specific diagnostic markers, although further improvement in diagnostic power is desirable.Key words: myelodysplastic syndromes, flow cytometry, diagnosis.Citation: Ogata K, Della Porta MG, Malcovati L, Picone C, Yokose N, Matsuda A, Yamashita T, Tamura H, Tsukada J, and Dan K. Diagnostic utility of flow cytometry in low-grade myelodysplastic syndromes: a prospective validation study. Haematologica 2009;94:1066-1074. doi:10.3324/haematol.2009 This is an open-access paper. Diagnostic utility of flow cytometry in low-grade myelodysplastic syndromes: a prospective validation study
The online version of this article has a Supplementary Appendix. BackgroundThe current World Health Organization classification of myelodysplastic syndromes is based on morphological evaluation of bone marrow dysplasia. In clinical practice, the reproducibility of the recognition of dysplasia is usually poor especially in cases that lack specific markers such as ring sideroblasts and clonal cytogenetic abnormalities. Design and MethodsWe aimed to develop and validate a flow cytometric score for the diagnosis of myelodysplastic syndrome. Four reproducible parameters were analyzed: CD34 + myeloblast-related and B-progenitor-related cluster size (defined by CD45 expression and side scatter characteristics on CD34 + marrow cells), myeloblast CD45 expression and granulocyte side scatter value. The study comprised a "learning cohort" (n=538) to define the score and a "validation cohort" (n=259) to confirm its diagnostic value. ResultsWith respect to non-clonal cytopenias, patients with myelodysplastic syndrome had increased myeloblast-related cluster size, decreased B-progenitor-related cluster size, aberrant CD45 expression and reduced granulocyte side scatter (P<0.001). To define the flow cytometric score, these four parameters were combined in a regression model and the weight for each variable was estimated based on coefficients from that model. In the learning cohort a correct diagnosis of myelodysplastic syndrome was formulated in 198/281 cases (sensitivity 70%), while 18 false-positive results were noted among 257 controls (specificity 93%). Sixty-five percent of patients without specific markers of dysplasia (ring sideroblasts and clonal cytogenetic abnormalities) were correctly classified. A high value of the flow cytometric score was associated with multilineage dysplasia (P=0.001), transfusion dependency (P=0.02), and poor-risk cytogenetics (P=0.04). The sensitivity and specificity in the validation cohort (69% and 92%, respectively) were comparable to those in the learning cohort. The likelihood ratio of the flow cytometric score was 10. ConclusionsA flow cytometric score may help to establish the diagnosis of myelodysplastic syndrome, especially when morphology and cytogenetics are indeterminate. LeukemiaNET study. Haematologica 2012;97(8):1209-1217. doi:10.3324/haematol.2011 This is an open-access paper. Multicenter validation of a reproducible flow cytometric score for the diagnosis of low-grade myelodysplastic syndromes: results of a European LeukemiaNET study
Impaired immune responses have been hypothesised to be a possible trigger of unfavourable outcomes in coronavirus disease 2019 (COVID-19). We aimed to characterise IgM memory B cells in patients with COVID-19 admitted to an internal medicine ward in Northern Italy. Overall, 66 COVID-19 patients (mean age 74 ± 16.6 years; 29 females) were enrolled. Three patients (4.5%; 1 female) had been splenectomised and were excluded from further analyses. Fifty-five patients (87.3%) had IgM memory B cell depletion, and 18 (28.6%) died during hospitalisation (cumulative incidence rate 9.26/100 person-week; 5.8–14.7 95% CI). All patients who died had IgM memory B cell depletion. A superimposed infection was found in 6 patients (9.5%), all of them having IgM memory B cell depletion (cumulative incidence rate 3.08/100 person-week; 1.3–6.8 95% CI). At bivariable analyses, older age, sex, number of comorbidities, and peripheral blood lymphocyte count < 1500/µl were not correlated with IgM memory B cell depletion. A discrete-to-marked reduction of the B-cell compartment was also noticed in autoptic spleen specimens of two COVID-19 patients. We conclude that IgM memory B cells are commonly depleted in COVID-19 patients and this correlates with increased mortality and superimposed infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.