Mild traumatic brain injury (mTBI) is becoming recognized as a significant concern in modern society. In particular, youth is being increasingly seen as a vulnerable time period for mTBI, as this is the final developmental period for the brain and typically involves robust synaptic reorganization and axonal myelination. Another issue that is being hotly debated is whether mTBI differentially impacts the male and female brain. To examine the impact of mTBI in the juvenile brain, we measured hippocampal synaptic plasticity using a closed-head mTBI model in male and female Long-Evans rats (25-28 days of age) at either 1 h, 1 day, 7 days, or 28 days post-injury. In female rats, the dentate gyrus (DG) region ipsilateral to the impact showed a significant reduction in long-term potentiation (LTP) at 1 day, which persisted to 28 days following injury. In male rats, the deficit in LTP was maximal in the CA1 and DG subfields ipsilateral to the impact site 7 days post-injury; however, these deficits did not persist to 28 days post-injury. These data indicate that mTBI can produce more immediate and persistent impairments in synaptic plasticity in the female brain.
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability that can be traced to a single gene mutation. This disorder is caused by the hypermethylation of the Fmr1 gene, which impairs translation of Fragile X Mental Retardation Protein (FMRP). In Fmr1 knockout (KO) mice, the loss of FMRP has been shown to negatively impact adult hippocampal neurogenesis, and to contribute to learning, memory, and emotional deficits. Conversely, physical exercise has been shown to enhance cognitive performance, emotional state, and increase adult hippocampal neurogenesis. In the current experiments, we used two different voluntary running paradigms to examine how exercise impacts adult neurogenesis in the dorsal and ventral hippocampal dentate gyrus (DG) of Fmr1 KO mice. Immunohistochemical analyses showed that short-term (7 day) voluntary running enhanced cell proliferation in both wild-type (WT) and Fmr1 KO mice. In contrast, long-term (28 day) running only enhanced cell proliferation in the whole DG of WT mice, but not in Fmr1 KO mice. Interestingly, cell survival was enhanced in both WT and Fmr1 KO mice following exercise. Interestingly we found that running promoted cell proliferation and survival in the ventral DG of WTs, but promoted cell survival in the dorsal DG of Fmr1 KOs. Our data indicate that long-term exercise has differential effects on adult neurogenesis in ventral and dorsal hippocampi in Fmr1 KO mice. These results suggest that physical training can enhance hippocampal neurogenesis in the absence of FMRP, may be a potential intervention to enhance learning and memory and emotional regulation in FXS.
Hippocampal slices are widely used for in vitro electrophysiological experiments to study underlying mechanisms for synaptic transmission and plasticity, and there is a growing appreciation for sex differences in synaptic plasticity. To date, several studies have shown that the process of making slices from male animals can induce synaptogenesis in cornu ammonis area 1 (CA1) pyramidal cells, but there is a paucity of data for females and other brain regions. In the current study we use microcrystals of the lipophilic carbocyanine dye DiI (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate) to stain individual neurons in the CA1 and dentate gyrus (DG) hippocampal subfields of postnatal day 21 male and female rats. We show that the preparation of sections for electrophysiology produces significant increases in spines in sections obtained from females, similar to that observed in males. We also show that the procedures used for in vitro electrophysiology also result in significant spine increases in the DG and CA1 subfields. These results demonstrate the utility of this refined DiI procedure for staining neuronal dendrites and spines. They also show, for the first time, that in vitro electrophysiology slice preparations enhance spine numbers on hippocampal cells equivalently in both juvenile females and males. NEW & NOTEWORTHY This study introduces a new DiI technique that elucidates differences in spine numbers in juvenile female and male hippocampus, and shows that slice preparations for hippocampal electrophysiology in vitro may mask these differences.
Preclinical models for mild traumatic brain injury (mTBI) need to recapitulate several essential clinical features associated with mTBI, including a lack of significant neuropathology and the onset of neurocognitive symptoms normally associated with mTBI. Here we show how to establish a protocol for reliably and repeatedly inducing a mild awake closed head injury (ACHI) in rats, with no mortality or clinical indications of persistent pain. Moreover, we implement a new rapid neurological assessment protocol (NAP) that can be completely conducted within 1 min of each impact. This ACHI model will help to rectify the paucity of data on how repeated mTBI (r-mTBI) impacts the juvenile brain, an area of significant concern in clinical populations where there is evidence that behavioral sequelae following injury can be more persistent in juveniles. In addition, the ACHI model can help determine if r-mTBI early in life can predispose the brain to exhibiting greater neuropathology (i.e., chronic traumatic encephalopathy) later in life and can facilitate the identification of critical periods of vulnerability to r-mTBI across the lifespan. This article describes the protocol for administering an awake closed head mTBI (i.e., ACHI) to rats, as well as how to perform a rapid NAP following each ACHI. Methods for administering the ACHI to individual subjects repeatedly are described, as are the methods and scoring system for the NAP. The goal of this article is to provide a standardized set of procedures allowing the ACHI and NAP protocols to be used reliably by different laboratories. C 2019 by John Wiley & Sons, Inc.Keywords: behavior r concussion r head trauma r mild traumatic brain injury (2019). A rapid neurological assessment protocol for repeated mild traumatic brain injury in awake rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.