Context. Major mergers are popularly considered too destructive to produce the relaxed regular structures and the morphological inner components (ICs) usually observed in lenticular (S0) galaxies. Aims. We aim to test if major mergers can produce remnants with realistic S0 morphologies. Methods. We have selected a sample of relaxed discy remnants resulting from the dissipative merger simulations of the GalMer database and derived their properties mimicking the typical conditions of current observational data. We have compared their global morphologies, visual components, and merger relics in mock photometric images with their real counterparts. Results. Only ∼1-2 Gyr after the full merger, we find that: 1) many remnants (67 major and 29 minor events) present relaxed structures and typical S0 or E/S0 morphologies, for a wide variety of orbits and even in gas-poor cases. 2) Contrary to popular expectations, most of them do not exhibit any morphological traces of their past merger origin under typical observing conditions and at distances as nearby as 30 Mpc. 3) The merger relics are more persistent in minor mergers than in major ones for similar relaxing time periods. 4) No major-merger S0-like remnant develops a significant bar. 5) Nearly 58% of the major-merger S0 remnants host visually detectable ICs, such as embedded inner discs, rings, pseudo-rings, inner spirals, nuclear bars, and compact sources, very frequent in real S0s too. 6) All remnants contain a lens or oval, identically ubiquitous in local S0s. 7) These lenses and ovals do not come from bar dilution in major-merger cases, but are associated with stellar halos or embedded inner discs instead (thick or thin). Conclusions. The relaxed morphologies, lenses, ovals, and other ICs of real S0s do not necessarily come from internal secular evolution, gas infall, or environmental mechanisms, as traditionally assumed, but they can result from major mergers as well.
Context. Observations reveal a strong structural coupling between bulge and disc in S0 galaxies, which seems difficult to explain if they have formed from supposedly catastrophic events such as major mergers. Aims. We face this question by quantifying the bulge-disc coupling in dissipative simulations of major and minor mergers that result in realistic S0s. Methods. We have studied the dissipative N-body binary merger simulations from the GalMer database that give rise to realistic, relaxed E/S0 and S0 remnants (67 major and 29 minor mergers). We simulate surface brightness profiles of these S0-like remnants in the K band, mimicking typical observational conditions, to perform bulge-disc decompositions analogous to those carried out in real S0s. Additional components have been included when needed. The global bulge-disc structure of these remnants has been compared with real data. Results. The S0-like remnants distribute in the B/T -r e -h d parameter space consistently with real bright S0s, where B/T is the bulgeto-total luminosity ratio, r e is the bulge effective radius, and h d is the disc scalelength. Major mergers can rebuild a bulge-disc coupling in the remnants after having destroyed the structures of the progenitors, whereas minor mergers directly preserve them. Remnants exhibit B/T and r e /h d spanning a wide range of values, and their distribution is consistent with observations. Many remnants have bulge Sérsic indices ranging 1 < n < 2, flat appearance, and contain residual star formation in embedded discs, a result which agrees with the presence of pseudobulges in real S0s. Conclusions. Contrary to the popular view, mergers (and in particular, major events) can result in S0 remnants with realistically coupled bulge-disc structures in less than ∼3 Gyr. The bulge-disc coupling and the presence of pseudobulges in real S0s cannot be used as an argument against the possible major-merger origin of these galaxies.
Context. Lenticular galaxies (S0s) are more likely to host antitruncated (Type III) stellar discs than galaxies of later Hubble types. Major mergers are popularly considered too violent to make these breaks. Aims. We have investigated whether major mergers can result into S0-like remnants with realistic antitruncated stellar discs or not. Methods. We have analysed 67 relaxed S0 and E/S0 remnants resulting from dissipative N-body simulations of major mergers from the GalMer database. We have simulated realistic R-band surface brightness profiles of the remnants to identify those with antitruncated stellar discs. Their inner and outer discs and the breaks have been quantitatively characterized to compare with real data. Results. Nearly 70% of our S0-like remnants are antitruncated, meaning that major mergers that result in S0s have a high probability of producing Type III stellar discs. Our remnants lie on top of the extrapolations of the observational trends (towards brighter magnitudes and higher break radii) in several photometric diagrams, because of the higher luminosities and sizes of the simulations compared to observational samples. In scale-free photometric diagrams, simulations and observations overlap and the remnants reproduce the observational trends, so the physical mechanism after antitruncations is highly scalable. We have found novel photometric scaling relations between the characteristic parameters of the antitruncations in real S0s, which are also reproduced by our simulations. We show that the trends in all the photometric planes can be derived from three basic scaling relations that real and simulated Type III S0s fulfill: h i ∝ R brkIII , h o ∝ R brkIII , and μ brkIII ∝ R brkIII , where h i and h o are the scalelengths of the inner and outer discs, and μ brkIII and R brkIII are the surface brightness and radius of the breaks. Bars and antitruncations in real S0s are structurally unrelated phenomena according to the studied photometric planes. Conclusions. Major mergers provide a feasible mechanism to form realistic antitruncated S0 galaxies.
Context. Lenticular (S0) galaxies are known to derive from spiral galaxies. The fact that S0s nearly obey the Tully-Fisher relation (TFR) at z ∼ 0 (as spirals have done in the last ∼9 Gyr) is considered an argument against their major-merger origin because equal mergers of two disc galaxies produce remnants that are outliers of the TFR. Aims. We explore whether a scenario that combines an origin by mergers at z ∼ 1.8 − 1.5 with a subsequent passive evolution of the resulting S0 remnants since z ∼ 0.8-1 is compatible with observational data of S0s in the TFR both at z ∼ 0.8 and z ∼ 0. Methods. We studied a set of major and minor merger experiments from the GalMer database that generate massive S0 remnants that are dynamically relaxed and have realistic properties. We analysed the location of these remnants in the photometric and stellar TFRs assuming that they correspond to z ∼ 0.8 galaxies. We then estimated their evolution in these planes over the last ∼ 7 Gyr considering that they have evolved passively in isolation. The results were compared with data of real S0s and spirals at different redshifts. We also tested how the use of V circ or V rot,max affects the results. Results. Just after ∼ 1-2 Gyr of coalescence, major mergers generate S0 remnants that are outliers of the local photometric and stellar TFRs (as already stated in previous studies), in good agreement with observations at z ∼ 0.8. After ∼ 4 -7 Gyr of passive evolution in isolation, the S0 remnants move towards the local TFR, although the initial scatter among them persists. This scatter is sensitive to the indicator used for the rotation velocity: V circ values yield a lower scatter than when V rot,max values are considered instead. In the planes involving V rot,max , a clear segregation of the S0 remnants in terms of the spin-orbit coupling of the model is observed, in which the remnants of retrograde encounters overlap with local S0s hosting counter-rotating discs. The location of the S0 remnants at z ∼ 0 agrees well with the observed distribution of local S0 galaxies in the σ 0 -M K , V circ -σ 0 , and V rot,max -σ 0 planes. Conclusions. Massive S0 galaxies may have been formed through major mergers that occurred at high redshift and have later evolved towards the local TFR through passive evolution in relative isolation, a mechanism that would also contribute to the scatter observed in this relation.
Context. Numerical studies have shown that the properties of the S0 galaxies with kinematics intermediate between fast and slow rotators are difficult to explain by a scenario of major mergers. Aims. We investigate whether the smoother perturbation induced by minor mergers can reproduce these systems. Methods. We analysed collisionless N-body simulations of intermediate and minor dry mergers onto S0s to determine the structural and kinematic evolution induced by the encounters. The original primary galaxies represent gas-poor fast-rotator S0b and S0c galaxies with high intrinsic ellipticities. The original bulges are intrinsically spherical and have low rotation. Different mass ratios, parent bulges, density ratios, and orbits were studied. Results. Minor mergers induce a lower decrease of the global rotational support (as provided by λ e ) than encounters of lower mass ratios, which results in S0s with properties intermediate between fast and slow rotators. The resulting remnants are intrinsically more triaxial, less flattened, and span the whole range of apparent ellipticities up to e ∼ 0.8. They do not show lower apparent ellipticities in random projections than initially; on the contrary, the formation of oval distortions and the disc thickening increase the percentage of projections at 0.4 < e < 0.7. In the experiments with S0b progenitor galaxies, minor mergers tend to spin up the bulge and to slightly decrease its intrinsic ellipticity, whereas in the cases of primary S0c galaxies they keep the rotational support of the bulge nearly constant and significantly decrease its intrinsic ellipticity. The remnant bulges remain nearly spherical (B/A ∼ C/A > 0.9), but exhibit a wide range of triaxialities (0.20 < T < 1.00). In the plane of global anisotropy of velocities (δ) vs. intrinsic ellipticity ( e,intr ), some of our models extend the linear trend found in previous major merger simulations towards higher e,intr values, while others clearly depart from it (depending on the progenitor S0). This is consistent with the wide dispersion exhibited by real S0s in this diagram compared with ellipticals, which follow the linear trend drawn by major merger simulations. Conclusions. The smoother changes induced by minor mergers can explain the existence of S0s with intermediate kinematic properties between fast and slow rotators that are difficult to explain with major mergers. The different trends exhibited by ellipticals and S0 galaxies in the δ -e diagram may be pointing to the different role played by major mergers in the build-up of each morphological type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.