Excessive levels of extracellular glutamate in the nervous system are excitotoxic and lead to neuronal death. Glutamate transport, mainly by glutamate transporter GLT1/EAAT2, is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels in the central nervous system. We recently showed that neuroprotection after experimental ischemic preconditioning (IPC) involves, at least partly, the upregulation of the GLT1/EAAT2 glutamate transporter in astrocytes, but the mechanisms were unknown. Thus, we decided to explore whether activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR) gamma, known for its antidiabetic and antiinflammatory properties, is involved in glutamate transport. First, we found that the PPARgamma antagonist T0070907 inhibits both IPC-induced tolerance and reduction of glutamate release after lethal oxygen-glucose deprivation (OGD) (70.1%+/-3.4% versus 97.7%+/-5.2% of OGD-induced lactate dehydrogenase (LDH) release and 61.8%+/-5.9% versus 85.9%+/-7.9% of OGD-induced glutamate release in IPC and IPC+T0070907 1 mumol/L, respectively, n=6 to 12, P<0.05), as well as IPC-induced astrocytic GLT-1 overexpression. IPC also caused an increase in nuclear PPARgamma transcriptional activity in neurons and astrocytes (122.1%+/-8.1% and 158.6%+/-22.6% of control PPARgamma transcriptional activity, n=6, P<0.05). Second, the PPARgamma agonist rosiglitazone increased both GLT-1/EAAT2 mRNA and protein expression and [(3)H]glutamate uptake, and reduced OGD-induced cell death and glutamate release (76.3%+/-7.9% and 65.5%+/-15.1% of OGD-induced LDH and glutamate release in rosiglitazone 1 mumol/l, respectively, n=6 to 12, P<0.05). Finally, we have identified six putative PPAR response elements (PPREs) in the GLT1/EAAT2 promoter and, consistently, rosiglitazone increased fourfold GLT1/EAAT2 promoter activity. All these data show that the GLT1/EAAT2 glutamate transporter is a target gene of PPARgamma leading to neuroprotection by increasing glutamate uptake.
A short ischemic event [ischemic preconditioning (IPC)] can result in a subsequent resistance to severe ischemic injury (ischemic tolerance). Although tumor necrosis factor-␣ (TNF-␣) contributes to the brain damage found after cerebral ischemia, its expression and neuroprotective role in models of IPC have also been described. Regarding the role of TNF-␣ convertase (TACE/ADAM17), we have recently shown its upregulation in rat brain after IPC induced by transient middle cerebral artery occlusion and that subsequent TNF-␣ release accounts for at least part of the neuroprotection found in this model. We have now used an in vitro model of IPC using rat cortical cultures exposed to sublethal oxygen-glucose deprivation (OGD) to investigate TACE expression and activity after IPC and the subsequent mechanisms of ischemic tolerance. OGD-induced cell death was significantly reduced in cells exposed to IPC by sublethal OGD 24 hr before, an effect that was inhibited by the TACE inhibitor BB3103 (1 M) and anti-TNF-␣ antibody (2 g/ml) and that was mimicked by TNF-␣ (10 pg/ml) preincubation. Western blot analysis showed that TACE expression is increased after IPC. IPC caused TNF-␣ release, an effect that was blocked by the selective TACE inhibitor BB-3103. In addition, IPC diminished the increase in extracellular glutamate caused by OGD and increased cellular glutamate uptake and expression of EAAT2 and EAAT3 glutamate transporters; however, only EAAT3 upregulation was mediated by increased TNF-␣. These data demonstrate that neuroprotection induced by IPC involves upregulation of glutamate uptake partly mediated by TACE overexpression.
A short ischemic event (ischemic preconditioning (IPC)) can result in subsequent resistance to severe ischemic injury (ischemic tolerance (IT)). The expression and neuroprotective role of tumor necrosis factor (TNF-a) have been described in models of IPC and we have showed the participation of its processing enzyme, the TNF-a convertase enzyme (TACE) in this process. We have now decided to explore the expression and localization of TNF receptors (TNFR) as well as other signalling mechanisms involved in IT. A period of 10 mins of temporary middle cerebral artery occlusion (tMCAO) was used for focal IPC. To evaluate the ability of IPC to produce IT, permanent MCAO was performed 48 hours after IPC. Ischemic preconditioning produced a reduction in infarct volume, as we showed previously. Ischemic preconditioning caused upregulation of neuronal TNFR1 that was reduced by the selective TACE inhibitor BB1101. Intracerebral administration of TNFR1 antisense oligodeoxynucleotide, which caused a reduction in TNFR1 expression, inhibited the IPC-induced protective effect, showing that TNFR1 upregulation is implicated in IT. Moreover, treatment with BB1101, TNFR1 antisense and lactacystin-a specific proteasome inhibitor-blocked IPC-induced NF-jB. Immunohistochemical studies showed the expression of TACE and TNFR1 in neurons. In summary, these data show that IPC produces neuronal upregulation of TACE and TNFR1, and that the pathway TACE/TNF-a/TNFR1/NF-jB is involved in IT.
Accessory minerals are thought to play a key role in controlling the behaviour of certain trace elements such as REE, Y, Zr, Th and U during crusta 1 melting processes under high-grade metamorphic conditions. Although this is probably the case at middle crustal levels, when a comparison is made with granulite-facies lower crustal levels, differences are seen in trace element behaviour between accessory minerals and some major phases. Such a comparison can be made in Central Spain where two granulite-facies terranes have equilibrated under slightly different metamorphic conditions and where lower crustal xenoliths are also found. Differences in texture and chemical composition between accessory phases found in leucosomes and leucogranites and those of melanosomes and protholiths indicate that most of the accessory minerals in melt-rich migmatites are newly crystallized. This implies that an important redistribution of trace elements occurs during the early stages of granulite-facies metamorphism. In addition, the textural position of the accessory minerals with respect to the major phases is crucial in the redistribution of trace elements when melting proceeds via biotite dehydration melting reactions. In granulitic xenoliths from lower crusta 1 levels, the situation seems to be different, as major minerals show high concentration of certain trace elements, the distribution of which is thus controlled by reactions involving final consumption of AI-Ti-phlogopite. A marked redistribution ofHREE-Y -Zr between garnet and xenotime (where present) and zircon, but also ofLREE between feldspars (K-feldspar and plagioclase) and monazite, is suggested.
U-Pb SHRIMP ages obtained in zircons from the Sotosalbos and Toledo anatectic complexes in Central Spain give new constraints to the evolution of the inner part of the Hercynian Iberian belt. Pre Hercynian ages in zircons from the Sotosalbos com plex (-464 Ma) are well preserved and reveal that an age diversity of the Lower Paleozoic magmatism in the area exists, as previous data on westernmost or thogneisses yield significant older ages. Zircon ages in the pelite-derived granites from the Toledo complex also show an important N eoproterozoic age compo nent which points to a metasedimentary protolith deposited maximally 560 Ma ago. Younger zircon populations in both complexes at -330 Ma in the Sotosalbos region and -317 Ma in the Toledo com plex indicate an important diachronism between the anatectic processes in both areas but also that these processes are mainly unrelated to the generation of the later Hercynian granite batholith of Central Spain, which could be of deeper crustal derivation. In addition, as migmatization occurred late in the metamorphic cycle, after peak conditions were at tained, the age of anatexis is younger than the age of the main Hercynian metamorphic event, which still is not well constrained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.