In mixed criticality systems (MCSs), the time-triggered scheduling approach focuses on a special case of safety-critical embedded applications which run in a time-triggered environment. Sometimes, for these types of MCSs, perfectly periodical (i.e., jitterless) scheduling for certain critical tasks is needed. In this paper, we propose FENP_MC (Fixed Execution Non-Preemptive Mixed Criticality), a real-time, table-driven, non-preemptive scheduling method specifically adapted to mixed criticality systems which guarantees jitterless execution in a mixed criticality time-triggered environment. We also provide a multiprocessor version, namely, P_FENP_MC (Partitioned Fixed Execution Non-Preemptive Mixed Criticality), using a partitioning heuristic. Feasibility tests are proposed for both uniprocessor and homogenous multiprocessor systems. An analysis of the algorithm performance is presented in terms of success ratio and scheduling jitter by comparing it against a time-triggered and an event-driven method in a non-preemptive context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.