The accumulation of marine organisms on ship hulls, such as microorganisms, barnacles, and seaweeds, represents a global problem for maritime industries, with both economic and environmental costs. The use of biocide-containing paints poses a serious threat to marine ecosystems, affecting both target and non-target organisms driving science and technology towards non-biocidal solutions based on physico-chemical and materials properties of coatings. The review reports recent development of hydrophobic protective coatings in terms of mechanical properties, correlated with the wet ability features. The attention is focused mainly on coatings based on siloxane and epoxy resin due to the wide application fields of such systems in the marine industry. Polyurethane and other systems have been considered as well. These coatings for anti-fouling applications needs to be both long-term mechanically stable, perfectly adherent with the metallic/composite substrate, and capable to detach/destroy the fouling organism. Prospects should focus on developing even “greener” antifouling coatings solutions. These coatings should also be readily addressable to industrial scale-up for large-scale product distribution, possibly at a reasonable cost.
Ultra High molecular weight polyethylene (UHMWPE) suffers wear degradation in total joint replacements and it needs to be improved. Thus, we enhanced wear resistance of UHMWPE with carbon nanofiller and paraffin oil and studied its tribological behavior in Simulated Synovial Fluid (SSF) for 60 days at 37 °C to reproduce the conditions of a real joint. Ageing in biological fluid accelerates the wear action but nanocomposite exhibited a higher wear resistance compared to UHMWPE because of its higher structural homogeneity. Carbon nanofiller closes the porosity of UHMWPE hindering SSF to penetrate inside. Wear resistance of the nanocomposite with 1.0 wt.% of CNF improved of 65% (before ageing) and of 70% (after 60 days in SSF) with respect to pure UHMWPE.
Agri-food wastes (such as brewer’s spent grain, olive pomace, residual pulp from fruit juice production, etc.) are produced annually in very high quantities posing a serious problem, both environmentally and economically. These wastes can be used as secondary starting materials to produce value-added goods within the principles of the circular economy. In this context, this review focuses on the use of agri-food wastes either to produce building blocks for bioplastics manufacturing or biofillers to be mixed with other bioplastics. The pros and cons of the literature analysis have been highlighted, together with the main aspects related to the production of bioplastics, their use and recycling. The high number of European Union (EU)-funded projects for the valorisation of agri-food waste with the best European practices for this industrial sector confirm a growing interest in safeguarding our planet from environmental pollution. However, problems such as the correct labelling and separation of bioplastics from fossil ones remain open and to be optimised, with the possibility of reuse before final composting and selective recovery of biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.