: Melatonin, the main secretory product of the pineal gland, is known to collaborate against oxidative stress within cells, but its mechanism of action in terms of stimulating antioxidant enzymes remains unclear. Herein, we propose that melatonin modulates antioxidant enzyme activities via its interaction with calmodulin, which in turn inhibits downstream processes that lead to the inactivation of nuclear RORα melatonin receptor. Eventually, this nuclear transcription factor downregulates NF‐κB‐induced antioxidant enzyme expression. Therefore, the increment in antioxidant enzyme activities induced by melatonin involves the inhibition of the RORα pathway. Thus, in addition to its direct free radical scavenging activities, melatonin has important actions in oxidative defense by stimulating enzymes which metabolize free radicals and radical products to innocuous metabolites.
These results prove the existence of a pathogenic mechanism of lung stretch-induced hippocampal apoptosis that could explain the neurological changes in ventilated patients and may help to identify novel therapeutic approaches.
The senescence-accelerated mouse (SAM) is a useful animal model to study aging or age-associated disorder. In the present study, we have used a multidisciplinary approach to the characterization of changes that occur in aging and in the modelling of brain aging. The SAMP8 mouse at 5 months of age exhibited an increase in gliosis and molecular oxidative damage. Likewise, we found that superoxide dismutase activity decreased compared with age-matched SAMR1 while there were no differences in activity of catalase and glutathione reductase. These results indicate that the decrease of superoxide dismutase may be involved in the increase of oxidative stress in brain of SAMP8 at younger stages. This suggestion is supported by an increase in the expression of alpha-synuclein together with phosphorylated tau protein, which is concurrent with the decline of that antioxidant enzyme. Alpha-synuclein aggregates are invariably associated with tau pathologies and our results demonstrate that alpha-synuclein accumulation is a potent inducer of tau pathologies not only in neurodegenerative diseases but also in normal aging. These results also imply that SAMP8 are exposed to elevated levels of oxidative stress from an early age, and that could be a very important cause of the senescence-related impairments and degeneration in the brain seen in this strain.
Huntington's disease (HD) is the most common of nine inherited neurological disorders caused by expanded polyglutamine (polyQ) sequences which confer propensity to self-aggregate and toxicity to their corresponding mutant proteins. It has been postulated that polyQ expression compromises the folding capacity of the cell which might affect other misfolding-prone proteins. α-Synuclein (α-syn) is a small neural-specific protein with propensity to self-aggregate that forms Parkinson's disease (PD) Lewy bodies. Point mutations in α-syn that favor self-aggregation or α-syn gene duplications lead to familial PD, thus indicating that increased α-syn aggregation or levels are sufficient to induce neurodegeneration. Since polyQ inclusions in HD and other polyQ disorders are immunopositive for α-syn, we speculated that α-syn might be recruited as an additional mediator of polyQ toxicity. Here, we confirm in HD postmortem brains and in the R6/1 mouse model of HD the accumulation of α-syn in polyQ inclusions. By isolating the characteristic filaments formed by aggregation-prone proteins, we found that N-terminal mutant huntingtin (N-mutHtt) and α-syn form independent filamentous microaggregates in R6/1 mouse brain as well as in the inducible HD94 mouse model and that N-mutHtt expression increases the load of α-syn filaments. Accordingly, α-syn knockout results in a diminished number of N-mutHtt inclusions in transfected neurons and also in vivo in the brain of HD mice. Finally, α-syn knockout attenuates body weight loss and early motor phenotype of HD mice. This study therefore demonstrates that α-syn is a modifier of polyQ toxicity in vivo and raises the possibility that potential PD-related therapies aimed to counteract α-syn toxicity might help to slow HD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.