The emergence of Candida auris is considered as one of the most serious problems associated with nosocomial transmission and with infection control practices in hospital environment. This multidrug resistant species is rapidly spreading worldwide, with several described outbreaks. Until now, this species has been isolated from different hospital surfaces, where it can survive for long periods. There are multiple unanswered questions regarding C. auris, such as prevalence in population, environmental contamination, effectiveness of infection prevention and control, and impact on patient mortality. In order to understand how it spreads and discover possible reservoirs, it is essential to know the ecology, natural environment, and distribution of this species. It is also important to explore possible reasons to this recent emergence, namely the environmental presence of azoles or the possible effect of climate change on this sudden emergence. This review aims to discuss some of the most challenging issues that we need to have in mind in the management of C. auris and to raise the awareness to its presence in specific indoor environments as hospital settings.
Although numerous studies have been conducted on microbial contaminants associated with various stages related to poultry and meat products processing, only a few reported on fungal contamination of poultry litter. The goals of this study were to (1) characterize litter fungal contamination and (2) report the incidence of keratinophilic and toxigenic fungi presence. Seven fresh and 14 aged litter samples were collected from 7 poultry farms. In addition, 27 air samples of 25 litters were also collected through impaction method, and after laboratory processing and incubation of collected samples, quantitative colony-forming units (CFU/m3) and qualitative results were obtained. Twelve different fungal species were detected in fresh litter and Penicillium was the most frequent genus found (59.9%), followed by Alternaria (17.8%), Cladosporium (7.1%), and Aspergillus (5.7%). With respect to aged litter, 19 different fungal species were detected, with Penicillium sp. the most frequently isolated (42.3%), followed by Scopulariopsis sp. (38.3%), Trichosporon sp. (8.8%), and Aspergillus sp. (5.5%). A significant positive correlation was found between litter fungal contamination (CFU/g) and air fungal contamination (CFU/m3). Litter fungal quantification and species identification have important implications in the evaluation of potential adverse health risks to exposed workers and animals. Spreading of poultry litter in agricultural fields is a potential public health concern, since keratinophilic (Scopulariopsis and Fusarium genus) as well as toxigenic fungi (Aspergillus, Fusarium, and Penicillium genus) were isolated.
Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.
Recent studies suggest that sand can serve as a vehicle for exposure of humans to pathogens at beach sites, resulting in increased health risks. Sampling for microorganisms in sand should therefore be considered for inclusion in regulatory programmes aimed at protecting recreational beach users from infectious disease. Here, we review the literature on pathogen levels in beach sand, and their potential for affecting human health. In an effort to provide specific recommendations for sand sampling programmes, we outline published guidelines for beach monitoring programmes, which are currently focused exclusively on measuring microbial levels in water. We also provide background on spatial distribution and temporal characteristics of microbes in sand, as these factors influence sampling programmes. First steps toward establishing a sand sampling programme include identifying appropriate beach sites and use of initial sanitary assessments to refine site selection. A tiered approach is recommended for monitoring. This approach would include the analysis of samples from many sites for faecal indicator organisms and other conventional analytes, while testing for specific pathogens and unconventional indicators is reserved for high-risk sites. Given the diversity of microbes found in sand, studies are urgently needed to identify the most significant aetiological agent of disease and to relate microbial measurements in sand to human health risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.