We present solutions for Hall equilibria applicable to neutron star crusts. Such magnetic configurations satisfy a Grad-Shafranov-type equation, which is solved analytically and numerically. The solutions presented cover a variety of configurations, from purely poloidal fields connected to an external dipole to poloidal-toroidal fields connected to an external vacuum field, or fully confined within the star. We find that a dipole external field should be supported by a uniformly rotating electron fluid. The energy of the toroidal magnetic field is generally found to be a few percent of the total magnetic field energy for the fields with an external component. We discuss the evolution due to Ohmic dissipation which leads to slowing down of the electron fluid. We also find that the transition from an MHD equilibrium to a state governed by Hall effect, generates spontaneously an additional toroidal field in regions where the electron fraction changes.
It is known that the center-of-mass energy of the collision of two massive particles following geodesics around a black hole presents a maximum. The maximum energy increases when the black hole is endowed with spin, and for a maximally rotating hole this energy blows up, offering, in principle, a unique probe of fundamental physics. This work extends the latter studies by considering that the colliding particles possess intrinsic angular momentum (spin), described by the Hanson-Regge-Hojman theory of spinning particles. By analyzing planar trajectories of spinning particles around non-rotating black holes, a significant increase of the invariant collision energy is found. Radial turning points, causality constraints, and limitations of the theory are discussed.
Upper main sequence stars, white dwarfs and neutron stars are known to possess stable, large-scale magnetic fields. Numerical works have confirmed that stable MHD equilibria can exist in nonbarotropic, stably stratified stars. On the other hand, it is unclear whether stable equilibria are possible in barotropic stars, although the existing evidence suggests that they are all unstable. This work aims to construct barotropic equilibria in order to study their properties, as a first step to test their stability. We have assumed that the star is a perfectly conducting, axially symmetric fluid, allowing for both poloidal and toroidal components of the magnetic field. In addition, we made the astrophysically justified assumption that the magnetic force has a negligible influence on the fluid structure, in which case the equilibrium is governed by the Grad-Shafranov equation, involving two arbitrary functions of the poloidal flux. We built a numerical code to solve this equation, allowing for an arbitrary prescription for these functions. Taking particularly simple, but physically reasonable choices for these functions with a couple of adjustable parameters, all of the equilibria found present only a small ( 10%) fraction of the magnetic energy stored in the toroidal component, confirming previous results. We developed an analytical model in order to study in more detail the behavior of the magnetic energy over the full range of parameters. The model confirms that the toroidal fraction of the energy and the ratio of toroidal to poloidal flux are bounded from above for the whole range of parameters.
The motion of spinning massless particles in gravitationally curved backgrounds is revisited by considering new types of constraints. Those constraints guarantee zero mass (PµP µ = 0) and they allow for the possibility of trajectories which are not simply null geodesics. To exemplify this previously unknown possibility, the equations of motion are solved for radial motion in Schwarzschild background. It is found that the particle experiences a spin-induced energy shift, which is proportional to the Hawking temperature of the black hole background. 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.