BackgroundRp1 is a complex locus of maize, which carries a set of genes controlling race-specific resistance to the common rust fungus, Puccinia sorghi. The resistance response includes the “Hypersensitive response” (HR), a rapid response triggered by a pathogen recognition event that includes localized cell death at the point of pathogen penetration and the induction of pathogenesis associated genes. The Rp1-D21gene is an autoactive allelic variant at the Rp1 locus, causing spontaneous activation of the HR response, in the absence of pathogenesis. Previously we have shown that the severity of the phenotype conferred by Rp1-D21 is highly dependent on genetic background.ResultsIn this study we show that the phenotype conferred by Rp1-D21 is highly dependent on temperature, with lower temperatures favoring the expression of the HR lesion phenotype. This temperature effect was observed in all the 14 genetic backgrounds tested. Significant interactions between the temperature effects and genetic background were observed. When plants were grown at temperatures above 30°C, the spontaneous HR phenotype conferred by Rp1-D21 was entirely suppressed. Furthermore, this phenotype could be restored or suppressed by alternately reducing and increasing the temperature appropriately. Light was also required for the expression of this phenotype. By examining the expression of genes associated with the defense response we showed that, at temperatures above 30°C, the Rp1-D21 phenotype was suppressed at both the phenotypic and molecular level.ConclusionsWe have shown that the lesion phenotype conferred by maize autoactive resistance gene Rp1-D21 is temperature sensitive in a reversible manner, that the temperature-sensitivity phenotype interacts with genetic background and that the phenotype is light sensitive. This is the first detailed demonstration of this phenomenon in monocots and also the first demonstration of the interaction of this effect with genetic background. The use of temperature shifts to induce a massive and synchronous HR in plants carrying the Rp1-D21 genes will be valuable in identifying components of the defense response pathway.
The acquisition of ethnobotanical information from traditional practitioners remains an empirical aspect of understanding the ethnopharmacology research. However, integration of information on chemical composition of plant extracts and their pharmacological activities forms a key resource for synthesis of new and effective therapeutics. In traditional African medicine, Gnidia glauca has folkloric remedies against obesity and its associated oxidative stress-mediated complications. However, the upsurge in its use has not been accompanied with scientific validations to support these claims. The present study aimed to determine the antioxidant potential of G glauca as a promising antiobesity agent. The antioxidant effects of the extract were assessed against 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, hydrogen peroxide, nitric oxide, and superoxide radicals as well as lipid peroxidation, iron-chelating effect, and ferric-reducing power. Phytochemical analysis was conducted using gas chromatography linked to mass spectrophotometry. The results revealed that G glauca exhibited scavenging activities against all radicals formed. Besides, the extract showed iron chelation and ferric reducing abilities. The extract indicated a lower half maximal inhibitory concentration value than the standards used. For instance, the extract inhibited 50% of the formation of 2,2-diphenyl-1-picrylhydrazine at the concentration of 1.33 ± 0.03 mg/mL relative to 1.39 ± 0.06 mg/mL of the standard, vitamin C at 1% confidence limit. Similarly, the extract scavenged 50% of hydroxyl radical at 204.34 ± 10.64 μg/mL relative to 210.05 ± 8.80 μg/mL of gallic acid. The extract also contained various phytochemicals that have been associated with antiobesity effects. The synergistic effects of these phytocompounds increase their bioavailability and action on multiple molecular targets thereby correcting obesity-induced oxidative stress.
Bulbine abyssinica A. Rich. is used in traditional medicine to treat rheumatism, dysentery, bilharzia, cracked lips, back pain, infertility, diabetes mellitus, and gastrointestinal, vaginal, and bladder infections. Therefore, preliminary phytochemical screening, antioxidant, anti-inflammatory, and antibacterial properties of the whole plant (acetone and aqueous extracts) were determined using standard procedures. The in vitro antioxidant model assays revealed that the plant possesses free radical scavenging potential varying with free radical species. The species showed significant protein denaturation inhibitory activity with good protection against erythrocyte membrane lysis indicating anti-inflammatory potential. The results also showed that the species was active against the growth of all the selected eight diabetic status opportunistic bacteria except one. Moreover, the species is characterized by appreciable amounts of total phenols, flavonoids, flavanols, proanthocyanidins, and alkaloids. Traces amounts of saponins and tannins were also observed. Amongst the identified phytochemicals present, empirical searches identified them being antioxidant, anti-inflammatory, and antimicrobial agents. The identification of these phytochemical constituents with their known pharmacological properties indicates that this plant is a good source of the free radical scavenging, anti-inflammatory, and antimicrobial agents. These findings also account for the multipharmacological use of B. abyssinica in fork medicine.
Obesity is the main component of metabolic syndromes involving distinct etiologies that target different underlying behavioral and physiological functions within the brain structures and neuronal circuits. An alteration in the neuronal circuitry stemming from abdominal or central obesity stimulates a cascade of changes in neurochemical signaling that directly or indirectly mediate spontaneously emitted behaviors such as locomotor activity patterns, anxiety, and exploration. Pharmacological agents available for the treatment of neurologic disorders have been associated with limited potency and intolerable adverse effects. These have necessitated the upsurge in the utilization of herbal prescriptions due to their affordability and easy accessibility and are firmly embedded within wider belief systems of many people. Gnidia glauca has been used in the management of many ailments including obesity and associated symptomatic complications. However, its upsurge in use has not been accompanied by empirical determination of these folkloric claims. The present study, therefore, is aimed at determining the modulatory effects of dichloromethane leaf extract of Gnidia glauca on locomotor activity, exploration, and anxiety-like behaviors in high-fat diet-induced obese rats in an open-field arena. Obesity was experimentally induced by feeding the rats with prepared high-fat diet and water ad libitum for 6 weeks. The in vivo antiobesity effects were determined by oral administration of G. glauca at dosage levels of 200, 250, and 300 mg/kg body weight in high-fat diet-induced obese rats from the 6th to 12th week. Phytochemical analysis was done using gas chromatography linked to mass spectroscopy. Results indicated that Gnidia glauca showed anxiolytic effects and significantly increased spontaneous locomotor activity and exploration-like behaviors in HFD-induced obese rats. The plant extract also contained phytocompounds that have been associated with amelioration of the main neurodegenerative mediators, viz., inflammation and oxidative stress. These findings provide “qualified leads” for the synthesis of new alternative therapeutic agents for the management of neurologic disorders. However, there is a need to conduct toxicity studies of Gnidia glauca to establish its safety profiles.
IntroductionFever is managed using synthetic drugs such as aspirin, paracetamol among others. Synthetic drugs are associated with many side effects. Herbal medicines form alternative therapy since they possess fewer side effects and are readily available. This study aimed to determine antipyretic potential of DCM extracts of E. globulus and S. didymobotrya in Swiss albino rats.Materials and methodsThe plant leaves samples were obtained from Embu County, Kenya. Dichloromethane solvent was used to extract bioactive constituents from the plant samples. Three grams of DCM leaf extracts of Eucalyptus globulus (Labill) and Senna didymobotrya (Fresenius) samples were obtained and analyzed to determine quantitative phytochemical composition at ICIPE laboratory using GC-MS. Albino rats were used in the antipyretic activity study. Nine groups of five experimental animals were used in each test: Positive control, normal control, negative control and experimental (25, 50, 100, 150, 200 and 250 mg/kg body weight extracts) groups. Pyrexia was induced by injection of turpentine in albino rats intraperitoneally. One hour later, the pyretic animals received the leaf extracts at various dose levels, reference drug (aspirin100 mg/kg body) or the vehicle (DMSO).ResultsResults of antipyretic in vivo bioscreening revealed that E. globulus and S. didymobotrya possess potent antipyretic activity which was comparable to that of the reference drug aspirin. Both extracts exhibited highest antipyretic activity at a dose of 250 mg/kg bw. Results of the GC-MS revealed that these plants possess bio-compounds such as Terpinolene, Alpha-pinene, Borneol, Globulol and Terpineols that are associated with antipyretic activity.ConclusionsIn conclusion, this study revealed that these plants are endowed with bioactive compounds such as terpenoids, and flavonoids that possess antipyretic activity in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.