The protozoan Entamoeba histolytica is the etiological agent of amoebiasis, which can spread to the liver and form amoebic liver abscesses. Histological studies conducted with resistant and susceptible models of amoebic liver abscesses (ALAs) have established that neutrophils are the first cells to contact invasive amoebae at the lesion site. Myeloperoxidase is the most abundant enzyme secreted by neutrophils. It uses hydrogen peroxide secreted by the same cells to oxidize chloride ions and produce hypochlorous acid, which is the most efficient microbicidal system of neutrophils. In a previous report, our group demonstrated that myeloperoxidase presents amoebicidal activity in vitro. The aim of the current contribution was to analyze in vivo the role of myeloperoxidase in a susceptible (hamsters) and resistant (Balb/c mice) animal models of ALAs. In liver samples of hamsters and mice inoculated intraportally with Entamoeba histolytica trophozoites, the number of neutrophils in ALAs was determined by enzymatic activity. The presence of myeloperoxidase was observed by staining, and its expression and activity were quantified in situ. A significant difference existed between the two animal models in the number of neutrophils and the expression and activity of myeloperoxidase, which may explain the distinct evolution of amoebic liver abscesses. Hamsters and mice were treated with an MPO inhibitor (4-aminobenzoic acid hydrazide). Hamsters treated with ABAH showed no significant differences in the percentage of lesions or in the percentage of amoebae damaged compared with the untreated hamsters. ABAH treated mice versus untreated mice showed larger abscesses and a decreased percentage of damaged amoebae in these lesion at all stages of evolution. Further studies are needed to elucidate the host and amoebic mechanisms involved in the adequate or inadequate activation and modulation of myeloperoxidase.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex clinical manifestations that arise between 18 and 36 months of age. Social interaction deficiencies, a restricted range of interests, and repetitive stereotyped behaviors are characteristics which are sometimes difficult to detect early. Several studies show that microRNAs (miRs/miRNAs) are strongly implicated in the development of the disorder and affect the expression of genes related to different neurological pathways involved in ASD. The present systematic review and meta-analysis addresses the current status of miRNA studies in different body fluids and the most frequently dysregulated miRNAs in patients with ASD. We used a combined approach to summarize miRNA fold changes in different studies using the mean values. In addition, we summarized p values for differential miRNA expression using the Fisher method. Our literature search yielded a total of 133 relevant articles, 27 of which were selected for qualitative analysis based on the inclusion and exclusion criteria, and 16 studies evaluating miRNAs whose data were completely reported were ultimately included in the meta-analysis. The most frequently dysregulated miRNAs across the analyzed studies were miR-451a, miR-144-3p, miR-23b, miR-106b, miR150-5p, miR320a, miR92a-2-5p, and miR486-3p. Among the most dysregulated miRNAs in individuals with ASD, miR-451a is the most relevant to clinical practice and is associated with impaired social interaction. Other miRNAs, including miR19a-3p, miR-494, miR-142-3p, miR-3687, and miR-27a-3p, are differentially expressed in various tissues and body fluids of patients with ASD. Therefore, all these miRNAs can be considered candidates for ASD biomarkers. Saliva may be the optimal biological fluid for miRNA measurements, because it is easy to collect from children compared to other biological fluids.
Introduction: Congenital syphilis is a major public health problem, and early diagnosis and treatment are necessary to prevent it. Penicillin G benzathine is the treatment of choice in pregnant women; however, it may fail to prevent fetal infection, as in the present case. Case presentation: Male newborn, son of an HIV negative mother with gestational syphilis (venereal disease research laboratory (VDRL) 1:4 dilution, positive treponemal test) diagnosed at week 21 of gestation and treated with three doses of 2 400 000 IU of penicillin G benzathine. At delivery, the mother presented VDRL 1:1 dilution. The newborn was diagnosed with congenital syphilis due to VDRL 1:4 dilution, positive treponemal test, elevated aspartate aminotransferases, hyposthenuria, proteinuria, hematuria, and leukocyturia that resolved after treatment with crystalline penicillin for 10 days. The molecular testing in blood showed a high treponemal load. The VDRL test at 3 months was non-reactive. Conclusions: Preventing congenital syphilis with the recommended treatment for gestational syphilis may fail. Moreover, diagnosing this condition in an asymptomatic newborn is difficult. Therefore, clinical and serological tests are recommended to confirm whether maternal treatment was effective in the fetus.
Entamoeba histolytica is a protozoan-pathogen-causing amoebic liver abscess (ALA). After amoeba establishment in the liver, it causes abundant infiltrate of neutrophils. Liver tissue damage by neutrophils results in part from anti-amoebic oxidative intermediates, including reactive oxygen species (ROS), reactive nitrogen species (RNS), and hypochlorous acid (HOCl), derived from the myeloperoxidase (MPO) enzyme. Ascorbic acid (ASC) is an antioxidant that acts as a scavenger for ROS and NOS-derived free radicals. No previous information regarding the effect of ASC concerning the participation of MPO in an experimental model of ALA in hamsters has been reported. Thus, the aim of the present work was to analyze the effect of ASC on acute ALA development and to measure the activity and gene expression of the MPO enzyme. Hamsters were treated with ASC (800 mg/kg) and then intrahepatically inoculated with E. histolytica trophozoites. Animals were sacrificed at 3, 6, and 12 h post-inoculation (p.i.), and liver samples were collected. The percentage of lesions, amoeba in situ count, MPO activity, and mpo gene expression were ascertained. Compared to ALA hamsters without ASC treatment as the control group (CT), the ALA group treated with ASC had a significant decrease in liver lesions (all p.i. hours) and viable amoeba count (12 h p.i.) and an increase in MPO activity (12 h p.i.) and mpo gene expression (6 h/12 h p.i.). These data suggest that ASC ameliorated liver damage caused by oxidizing products via modulation of mpo expression and activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.