Over the past 20 years, gastrointestinal infections in developing countries have been a serious health problem and are the second leading cause of morbidity among all age groups. Among pathogenic protozoans that cause diarrheal disease, the parasite Entamoeba histolytica produces amebic colitis as well as the most frequent extra-intestinal lesion, an amebic liver abscess (ALA). Usually, intestinal amebiasis and ALA are treated with synthetic chemical compounds (iodoquinol, paromomycin, diloxanide furoate, and nitroimidazoles). Metronidazole is the most common treatment for amebiasis. Although the efficacy of nitroimidazoles in killing amebas is known, the potential resistance of E. histolytica to this treatment is a concern. In addition, controversial studies have reported that metronidazole could induce mutagenic effects and cerebral toxicity. Therefore, natural and safe alternative drugs against this parasite are needed. Flavonoids are natural polyphenolic compounds. Flavonoids depend on malonyl-CoA and phenylalanine to be synthesized. Several flavonoids have anti-oxidant and anti-microbial properties. Since the 1990s, several works have focused on the identification and purification of different flavonoids with amebicidal effects, such as, -(-)epicatechin, kaempferol, and quercetin. In this review, we investigated the effects of flavonoids that have potential amebicidal activity and that can be used as complementary and/or specific therapeutic strategies against E. histolytica trophozoites. Interestingly, it was found that these natural compounds can induce morphological changes in the amebas, such as chromatin condensation and cytoskeletal protein re-organization, as well as the upregulation and downregulation of fructose-1,6-bisphosphate aldolase, glyceraldehyde-phosphate dehydrogenase, and pyruvate:ferredoxin oxidoreductase (enzymes of the glycolytic pathway). Although the specific molecular targets, bioavailability, route of administration, and doses of some of these natural compounds need to be determined, flavonoids represent a very promising and innocuous strategy that should be considered for use against E. histolytica in the era of microbial drug resistance.
Host invasion by Entamoeba histolytica, the pathogenic agent of amebiasis, can lead to the development of amebic liver abscess (ALA). Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of ALA in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters). Histopathological findings reveal that the chronic phase of ALA in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction. Hence, the present review discusses the possible role of neutrophils in the effector immune response in ALA in rodents. Properly activated neutrophils are probably successful in eliminating amebas through oxidative and non-oxidative mechanisms, including neutrophil degranulation, the generation of free radicals (O2−, H2O2, HOCl) and peroxynitrite, the activation of NADPH-oxidase and myeloperoxidase (MPO) enzymes, and the formation of neutrophil extracellular traps (NETs). On the other hand, if amebas are not eliminated in the early stages of infection, they trigger a prolonged and exaggerated inflammatory response that apparently causes ALAs. Genetic differences in animals and humans are likely to be key to a successful host immune response.
Here, the effects of neurointermediate (NIL), anterior (AL), and total hypophysectomy (HYPOX) on ileal mucosa cells and gut-associated lymphoid tissue (GALT) are reported. Compared with the sham-operated (SHAM) rats, the villi height and goblet cells numbers were significantly decreased in all groups. Lamina propria area decreased in AL and HYPOX, but not in NIL animals. CD8(+) but not CD4(+) lymphocytes decreased in the HYPOX and NIL groups. Paneth cells did not change, while IgA cells, IgM cells, and secretory IgA were significantly decreased in all groups. NIL but not AL animals lost significant numbers of IgA cells and secretory IgA. In summary, pituitary hormones exert lobe-specific regulatory effects on the gut and on GALT.
Entamoeba histolytica is a protozoan-pathogen-causing amoebic liver abscess (ALA). After amoeba establishment in the liver, it causes abundant infiltrate of neutrophils. Liver tissue damage by neutrophils results in part from anti-amoebic oxidative intermediates, including reactive oxygen species (ROS), reactive nitrogen species (RNS), and hypochlorous acid (HOCl), derived from the myeloperoxidase (MPO) enzyme. Ascorbic acid (ASC) is an antioxidant that acts as a scavenger for ROS and NOS-derived free radicals. No previous information regarding the effect of ASC concerning the participation of MPO in an experimental model of ALA in hamsters has been reported. Thus, the aim of the present work was to analyze the effect of ASC on acute ALA development and to measure the activity and gene expression of the MPO enzyme. Hamsters were treated with ASC (800 mg/kg) and then intrahepatically inoculated with E. histolytica trophozoites. Animals were sacrificed at 3, 6, and 12 h post-inoculation (p.i.), and liver samples were collected. The percentage of lesions, amoeba in situ count, MPO activity, and mpo gene expression were ascertained. Compared to ALA hamsters without ASC treatment as the control group (CT), the ALA group treated with ASC had a significant decrease in liver lesions (all p.i. hours) and viable amoeba count (12 h p.i.) and an increase in MPO activity (12 h p.i.) and mpo gene expression (6 h/12 h p.i.). These data suggest that ASC ameliorated liver damage caused by oxidizing products via modulation of mpo expression and activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.