We assess progress toward the protection of 50% of the terrestrial biosphere to address the species-extinction crisis and conserve a global ecological heritage for future generations. Using a map of Earth's 846 terrestrial ecoregions, we show that 98 ecoregions (12%) exceed Half Protected; 313 ecoregions (37%) fall short of Half Protected but have sufficient unaltered habitat remaining to reach the target; and 207 ecoregions (24%) are in peril, where an average of only 4% of natural habitat remains. We propose a Global Deal for Nature—a companion to the Paris Climate Deal—to promote increased habitat protection and restoration, national- and ecoregion-scale conservation strategies, and the empowerment of indigenous peoples to protect their sovereign lands. The goal of such an accord would be to protect half the terrestrial realm by 2050 to halt the extinction crisis while sustaining human livelihoods.
The world's forests are crucially important for both biodiversity conservation and climate mitigation. New forest status and forest change spatial layers using remotely sensed data have revolutionised forest monitoring globally, and provide fine-scale deforestation alerts that can be actioned in near-real time. However, existing products are restricted to representing tree cover and do not reflect the considerable spatial variation in the biological importance of forests. Here we link modelled biodiversity values to remotely sensed data on tree cover to develop global maps of forest biodiversity significance (based on the rarity-weighted richness of forest mammal, bird, amphibian and conifer species) and forest biodiversity intactness (based on the modelled relationship between anthropogenic pressures and community intactness). The strengths and weaknesses of these products for policy and local decision-making are reviewed and we map out future improvements and developments that are needed to enhance their usefulness.
Our series suggests that CU to nickel may be far more common than anticipated and should be evaluated with prick testing when patients' history suggests nickel allergy and yet they are patch test negative.
Objective. To determine whether (1) a decreased concentration of Lactobacilli allows S. pyogenes to grow; (2) S. pyogenes is able to grow in the presence of healthy Lactobacillus concentrations; (3) S. pyogenes is capable of inhibiting Lactobacilli. Methods. One hundred fifty patient samples of S. pyogenes were mixed with four different concentrations of L. crispatus and L. jensenii. Colony counts and pH measurements were taken from these concentrations and compared using t-tests and ANOVA statistical analyses. Results. Statistical tests showed no significant difference between the colony counts of S. pyogenes by itself and growth when mixed with Lactobacilli, and no significant difference between the colony counts of S. pyogenes in the four different concentrations of Lactobacilli. Conclusion. The statistical data representing the growth of these two organisms suggests that Lactobacilli did not inhibit the growth of S. pyogenes. Also, S. pyogenes did not inhibit the growth of Lactobacilli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.