Working memory depends on communication between the hippocampus and the prefrontal cortex (PFC); however, the neural circuitry that mediates interactions between these brain areas has not been well characterized. Two candidate structures are the thalamic reuniens (RE) and rhomboid (Rh) nuclei, which are reciprocally connected with both the hippocampus and PFC. These known anatomical connections suggest that RE/Rh may be involved in mediating hippocampal-prefrontal communication, and therefore may be critical for working memory processing. To test the hypothesis that RE/Rh are necessary for working memory, we trained separate groups of rats to perform one of two tasks in a T-maze. The first task was a working memory-dependent conditional discrimination (CDWM) task, and the second task was a non-working memory-dependent conditional discrimination (CD) task. These tasks took place in the same maze, featured the same number of trials, and utilized the same cue (a tactile-visual maze insert). After rats had learned either task, RE/Rh were transiently inactivated with the GABAA receptor agonist muscimol, and performance was assessed. RE/Rh inactivation caused performance deficits on the CDWM task, but not the CD task. This result suggests that RE/Rh are a necessary component of working memory task performance, which is also thought to depend on the hippocampal-prefrontal circuit. RE/Rh inactivation did not cause a performance deficit on the CD task, suggesting that RE/Rh have dissociable contributions to working memory-dependent and non-working memory-dependent tasks, independently of the known contributions of these two thalamic nuclei to the sensorimotor and attention-related aspects of other memory tasks.
After extended implantation times, traditional intracortical neural probes exhibit a foreign body reaction characterized by a reactive glial sheath that has been associated with increased system impedance and signal deterioration. Previously, we have proposed that the local in vivo polymerization of an electronically and ionically conducting polymer, poly(3,4 ethylene dioxythiophene) (PEDOT), might help to rebuild charge transport pathways across the glial scar between the device and surrounding parenchyma (Richardson-Burns, Hendricks, & Martin, 2007). The EDOT monomer can be delivered via a microcannula/electrode system into the brain tissue of living animals followed by direct electrochemical polymerization, using the electrode itself as a source of oxidative current. In this study we investigated the long-term effect of local in vivo PEDOT deposition on hippocampal neural function and histology. Rodent subjects were trained on a hippocampus-dependent task, Delayed Alternation (DA), and implanted with the microcannula/electrode system in the hippocampus. The animals were divided into four groups with different delay times between the initial surgery and the electrochemical polymerization: (1) Control (no polymerization), (2) Immediate (polymerization within 5 minutes of device implantation), (3) Early (polymerization within 3–4 weeks after implantation), and (4) Late (polymerization 7–8 weeks after polymerization). System impedance at 1 kHz was recorded and the tissue reactions were evaluated by immunohistochemistry. We found that under our deposition conditions, PEDOT typically grew at the tip of the electrode, forming a ~500 μm cloud into the tissue. This is much larger than the typical width of the glial scar (~150 μm). After polymerization, the impedance amplitude near the neurologically important frequency of 1 kHz dropped for all the groups, however, there was a time window of 3–4 weeks for optimal decrease in impedance. For all surgery-polymerization time intervals, the polymerization did not cause significant deficits in performance of the DA task, suggesting that hippocampal function was not impaired by PEDOT deposition. However, GFAP+ and ED-1+ cells were also found at the deposition 2 weeks after the polymerization, suggesting potential secondary scarring. Therefore less extensive deposition or milder deposition conditions may be desirable to minimize this scarring while maintaining decreased system impedance.
The medial prefrontal cortex (mPFC) is responsible for executive functions such as abstract rule coding. strategy switching, and behavioral flexibility; however, there is some debate regarding the extent to which mPFC is involved in reversal learning, especially in complex multisensory tasks such as conditional discrimination. Therefore, we investigated the effects of mPFC inactivation on the acquisition, retention. and reversal of a visuospatial conditional discrimination (CD) task. In experiment 1. muscimol was infused through bilateral cannulae on days 1,2, and 3 to rest the effects of mPFC inactivation on task acquisition and days 19,. 20, and 21 to test the effects on retention of the task. For experiment 2, rats were trained on the CD task for 21 days with no infusions given, after which the reward contingency was reversed, with infusions given during the first six days of reversal. The results of experiment 1 showed that the muscimol and saline groups did not differ on acquisition or retention. However, experiment 2 showed that the muscimol group displayed significantly more performance errors than the control group during reversal. Compared to the control group, the muscimol group also showed a decreased tendency to use a side-bias strategy during the intermediate stages of reversal. The failure of the muscimol group to exhibit a side bias suggests that the mPFC is necessary for sampling strategies necessary for the reversal of a visuospatial CD task.
Key Points Question Can selective survival plausibly explain reported sex/gender differences in dementia incidence? Findings In this decision analytical model of 100 000 simulated adults aged 50 years and without dementia at baseline, sex/gender differences in dementia incidence consistent with literature (ie, 15%-20% elevated risk for women aged ≥85 years) were only observed in the presence of moderate to strong effects of selective survival characteristics that differed by sex/gender. Meaning These findings suggest that selective survival may contribute to sex/gender differences in dementia incidence but do not preclude the potential for additional contributions from biological mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.