Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi‐scale resolution. Volumetric bioprinting recently emerged as a paradigm‐shift in biofabrication. This ultrafast, light‐based technique sculpts cell‐laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell‐friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel‐based composites with enhanced mechanical behavior. Despite including non‐transparent melt electrowritten scaffolds in the volumetric printing process, high‐resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi‐material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof‐of‐concept, engineered tubular structures are obtained by building trilayered cell‐laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi‐technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi‐material living structures.
Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultra-fast, light-based technique sculpts cell-laden hydrogel bioresins into three-dimensional structures in a layerless fashion, providing unparalleled design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, for the first time, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds into the volumetric printing process, high-resolution bioprinted structures were successfully achieved. Tensile, burst and bending mechanical properties of printed tubes were tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered vessel-like structures were obtained by building tri-layered cell-laden vessels, and features (valves, branches, fenestrations) that could be resolved only by synergizing these printing methods. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.
Digital light processing (DLP) enables the fabrication of complex 3D structures based on a photopolymerizable resin usually containing a photo initiator and an UV or photo absorber. The resin and thus the final properties of the printed structures can be adjusted by adding fillers like bioceramic powders relevant for bone‐regeneration applications. Herein, a water‐based and biocompatible poly(ethylene glycol diacrylate) (PEGDA) resin containing the photo initiator lithium‐phenyl‐2,4,6‐trimethylbenzoylphosphinate (LAP) enables the production of 3D structures via DLP. The addition of calcium magnesium phosphate cement (CMPC) powder, acting as photo absorber, leads to higher accuracy of the final structures. After curing the printed construct in a diammonium–hydrogen phosphate (DAHP) bath for hardening, the resulting mechanical properties can be adjusted without post‐process sintering. Solid loading of up to 40 wt% CMPC powder is possible, and the resins are investigated regarding their rheological behavior and printability. The resulting constructs are analyzed in respect to their surface morphology using scanning electron microscope (SEM), porosity, phase composition using X‐ray diffraction (XRD) methods, as well as mechanical properties influenced by the hardening process using DAHP for different durations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.