Efficient and rapid particle enrichment at the submicron scale is essential for research in biomedicine and biochemistry. Here, we demonstrate an acoustofluidic method for submicron particle enrichment within a spinning droplet driven by a unidirectional transducer. The unidirectional transducer generates intense sound energy with relatively low attenuation. Droplets placed offset in the wave propagation path on a polydimethylsiloxane film undergo strong pressure gradients, deforming into an ellipsoid shape and spinning at high speed. Benefitting from the drag force induced by the droplet spin and acoustic streaming and the radial force induced by the droplet compression and expansion, the submicron particles in the liquid droplet quickly enrich toward the central area following a spiral trajectory. Through numerical calculations and experimental processes, we have demonstrated the possible mechanism responsible for particle enrichment. The application of biological sample processing has also been exploited. This study anticipates that the strategy based on the spinning droplet and particle enrichment method will be highly desirable for many applications.
Current methods for the early diagnosis of cancer can be invasive and costly. In recent years, exosomes have been recognized as potential biomarkers for cancer diagnostics. The common methods for quantitative detection of exosomes, such as nanoparticle tracking analysis (NTA) and flow cytometry, rely on large-scale instruments and complex operation, with results not specific for cancer. Herein, we present a tri-channel electrochemical immunobiosensor for enzyme-free and label-free detecting carcino-embryonic antigen (CEA), neuron-specific enolase (NSE), and cytokeratin 19 fragments (Cyfra21-1) from exosomes for specific early diagnosis of lung cancer. The electrochemical immunobiosensor showed good selectivity and stability. Under optimum experimental conditions, the linear ranges were from 10−3 to 10 ng/mL for CEA, 10−4 to 102 ng/mL for NSE, and 10−3 to 102 ng/mL for Cyfra21-1, and a detection limit down to 10−4 ng/mL was achieved. Furthermore, we performed exosome analysis in three kinds of lung cancer. The results showed a distinct expression level of exosomal markers in different types. These works provide insight into a promising alternative for the quantification of exosomal markers in specific diseases in the following clinical bioassays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.