Under the guidance of the calculation of phase diagrams method, the self-organized Cu alloy/ stainless steel composite powders with a core/shell microstructure were developed based on the gas atomization process, and the formation evolution of self-organized core/shell structure composite powders was modeled by the phase field method. This paper gives a more detailed explanation for the formation of self-organized core/shell structure composite powders from the viewpoints of thermodynamics and kinetics. Such core/shell structure composite powders have good combination of high strength and corrosion resistance ͑Fe-rich phase͒ and high electric and thermal conductivities ͑Cu-rich phase͒ with many potential advanced applications in electronic devices.
The phase diagram of the Ag-Ni binary system has been evaluated by using the calculation of phase diagrams (CALPHAD) method based on experimental data of the phase equilibria and thermodynamic properties. Gibbs free energies of the liquid and fcc phases were described by the subregular solution model with the Redlich-Kister equation. On the basis of the thermodynamic parameters of the Ag-Ni, Ag-Cu, and Cu-Ni systems, and experimental information of the phase equilibria in the Ag-Cu-Ni system, the thermodynamic assessment in the Ag-Cu-Ni system was carried out. The calculated results in both the Ag-Ni and Ag-Cu-Ni systems are in reasonable agreement with experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.