Biosynthesis of the highly biologically active long-chain polyunsaturated fatty acids, arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids, in vertebrates requires the introduction of up to three double bonds catalyzed by fatty acyl desaturases (Fad). Synthesis of ARA is achieved by Δ6 desaturation of 18∶2n − 6 to produce 18∶3n − 6 that is elongated to 20∶3n − 6 followed by Δ5 desaturation. Synthesis of EPA from 18∶3n − 3 requires the same enzymes and pathway as for ARA, but DHA synthesis reportedly requires two further elongations, a second Δ6 desaturation and a peroxisomal chain shortening step. This paper describes cDNAs, fad1 and fad2, isolated from the herbivorous, marine teleost fish (Siganus canaliculatus) with high similarity to mammalian Fad proteins. Functional characterization of the cDNAs by heterologous expression in the yeast Saccharomyces cerevisiae showed that Fad1 was a bifunctional Δ6∕Δ5 Fad. Previously, functional dual specificity in vertebrates had been demonstrated for a zebrafish Danio rerio Fad and baboon Fad, so the present report suggests bifunctionality may be more widespread in vertebrates. However, Fad2 conferred on the yeast the ability to convert 22∶5n − 3 to DHA indicating that this S. canaliculatus gene encoded an enzyme having Δ4 Fad activity. This is a unique report of a Fad with Δ4 activity in any vertebrate species and indicates that there are two possible mechanisms for DHA biosynthesis, a direct route involving elongation of EPA to 22∶5n − 3 followed by Δ4 desaturation, as well as the more complicated pathway as described above.Δ4 desaturase | bifunctional Δ6/Δ5 desaturase | polyunsaturated fatty acid biosynthesis | Siganus canaliculatus | teleost
Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis.
Abstract. The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by the Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP throughout the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is maybe partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental aerosol and smoke are also investigated, based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at an altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around [33][34][35] • N in the middle of the plateau, and it is possibly associated with the high-altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.