Abstract. The influences of filler size and content on the properties (thermal conductivity, impact strength and tensile strength) of Al 2 O 3 /high density polyethylene (HDPE) composites are studied. Thermal conductivity and tensile strength of the composites increase with the decrease of particle size. The dependence of impact strength on the particle size is more complicated. The SEM micrographs of the fracture surface show that Al 2 O 3 with small particle size is generally more efficient for the enhancement of the impact strength, while the 100 nm particles prone to aggregation due to their high surface energy deteriorate the impact strength. Composite filled with Al 2 O 3 of 0.5 µm at content of 25 vol% show the best synthetic properties. It is suggested that the addition of nano-Al 2 O 3 to HDPE would lead to good performance once suitably dispersed.
Abstract. The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by the Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP throughout the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is maybe partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental aerosol and smoke are also investigated, based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at an altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around [33][34][35] • N in the middle of the plateau, and it is possibly associated with the high-altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.