During the last two decades, there has been broad interest in RNA-based technologies for the development of prophylactic and therapeutic vaccines. Preclinical and clinical trials have shown that mRNA vaccines provide a safe and long-lasting immune response in animal models and humans. In this review, we summarize current research progress on mRNA vaccines, which have the potential to be quick-manufactured and to become powerful tools against infectious disease and we highlight the bright future of their design and applications.
Summary
Acute infections are associated with a set of stereotypic behavioral responses, including anorexia, lethargy, and social withdrawal. Although these so called sickness behaviors are the most common and familiar symptoms of infections, their roles in host defense are largely unknown. Here we investigated the role of anorexia in models of bacterial and viral infections. We found that anorexia was protective while nutritional supplementation was detrimental in bacterial sepsis. Furthermore, glucose was necessary and sufficient for these effects. In contrast, nutritional supplementation protected against mortality from influenza infection and viral sepsis, while blocking glucose utilization was lethal. In both bacterial and viral models, these effects were largely independent of pathogen load and magnitude of inflammation. Instead, we identify opposing metabolic requirements tied to cellular stress adaptations critical for tolerance of differential inflammatory states.
All-inorganic perovskite solar cells provide a promising solution to tackle the thermal instability problem of organic-inorganic perovskite solar cells (PSCs). Herein, we designed an all-inorganic perovskite solar cell with novel structure (FTO/NiO /CsPbIBr/ZnO@C/Ag), in which ZnO@C bilayer was utilized as the electron-transporting layers that demonstrated high carrier extraction efficiency and low leakage loss. Consequently, the as-fabricated all-inorganic CsPbIBr perovskite solar cell yielded a power conversion efficiency (PCE) as high as 13.3% with a V of 1.14 V, J of 15.2 mA·cm, and FF of 0.77. The corresponding stabilized power output (SPO) of the device was demonstrated to be ∼12% and remarkably stable within 1000 s. Importantly, the obtained all-inorganic PSCs without encapsulation exhibited only 20% PCE loss with thermal treatment at 85 °C for 360 h, which largely outperformed the organic-species-containing PSCs. The present study demonstrates potential in overcoming the intractable issue concerning the thermal instability of perovskite solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.