Tibetan pig is native to the Qinghai-Tibet Plateau and has adapted to the high-altitude environmental condition such as hypoxia. However, its origin and genetic mechanisms underlying high-altitude adaptation still remain controversial and enigmatic. Herein, we analyze 229 genomes of wild and domestic pigs from Eurasia, including 63 Tibetan pigs, and detect 49.6 million high-quality variants. Phylogenomic and structure analyses show that Tibetan pigs have a close relationship with low-land domestic pigs in China, implying a common domestication origin. Positively selected genes in Tibetan pigs involved in high-altitude physiology, such as hypoxia, cardiovascular systems, UV damage, DNA repair. Three of loci with strong signals of selection are associated with EPAS1 , CYP4F2 , and THSD7A genes, related to hypoxia and circulation. We validated four non-coding mutations nearby EPAS1 and CYP4F2 showing reduced transcriptional activity in Tibetan pigs. A high-frequency missense mutation is found in THSD7A (Lys561Arg) in Tibetan pigs. The selective sweeps in Tibetan pigs was found in association with selection against non-coding variants, indicating an important role of regulatory mutations in Tibetan pig evolution. This study is important in understanding the evolution of Tibetan pigs and advancing our knowledge on animal adaptation to high-altitude environments.
BackgroundThe toll-like receptor (TLR)4-interleukin1β (IL1β) signaling pathway is involved in the monosodium urate (MSU)-mediated inflammation. The aim of this present study was to determine whether the TLR4 gene rs2149356 SNP is associated with gouty arthritis (GA) susceptibility and whether rs2149356 SNP impacts the TLR4-IL1β signaling pathway molecules expression.Methods and FindingsThe rs2149356 SNP was detected in 459 GA patients and 669 control subjects (containing 459 healthy and 210 hyperuricemic subjects). Peripheral blood mononuclear cells (PBMCs) TLR4 mRNA and serum IL1β were measured in different genotype carriers, and correlations between TLR4 gene SNP and TLR4 mRNA, IL1β were investigated. The frequencies of the genotype and allele were significantly different between the GA and control groups (P<0.01, respectively). The TT genotype was associated with a significantly increased risk of GA (OR = 1.88); this finding was not influenced by making adjustments for the components of possible confounders (adjusted OR = 1.96). TLR4 mRNA and IL1β were significantly increased in the TT genotype from acute GA patients (P<0.05, respectively), and lipids were significantly different among three genotypes in the GA patients (P<0.05, respectively).ConclusionsThe TLR4 gene rs2149356 SNP might be associated with GA susceptibility, and might participate in regulating immune, inflammation and lipid metabolism. Further studies are required to confirm these findings.
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.