Response surface methodology was employed to optimize the degradation conditions of AFB1 by Rhodococcus erythropolis in liquid culture. The most important factors that influence the degradation, as identified by a two-level Plackett-Burman design with six variables, were temperature, pH, liquid volume, inoculum size, agitation speed and incubation time. Central composite design (CCD) and response surface analysis were used to further investigate the interactions between these variables and to optimize the degradation efficiency of R. erythropolis based on a second-order model. The results demonstrated that the optimal parameters were: temperature, 23.2 °C; pH, 7.17; liquid volume, 24.6 mL in 100-mL flask; inoculum size, 10%; agitation speed, 180 rpm; and incubation time, 81.9 h. Under these conditions, the degradation efficiency of R. erythropolis could reach 95.8% in liquid culture, which was increased by about three times as compared to non-optimized conditions. The result by mathematic modeling has great potential for aflatoxin removal in industrial fermentation such as in food processing and ethanol production.
Rhodococcus erythropolis was found to effectively degrade aflatoxin B l produced by Aspergillus flavus and Aspergillus parasiticus. However, one problem of concern was the slow growth of this strain. In this study, Plackett-Burman design was used to select the most important variables, namely, temperature, pH, inoculum size, liquid volume, agitation speed and culture time that affected the growth of R. erythropolis. Central composite experimental design and response surface analysis were adopted to derive a statistical model for optimizing the culture conditions. From the obtained results, it can be concluded that the optimum parameters were: temperature, 15.3°C; pH, 5.56; inoculum size, 4%; liquid volume, 70 ml in 250 ml flask; agitation speed, 180 rpm; and culture time, 58.2 h. At this optimum point, the populations of the viable organisms could reach 10 8 colony forming units (CFU)/ml, which was 100 times higher than that incubated under the initial conditions. After 58.2 h incubation in this optimum cultivating conditions, 53.9 ± 2.1% of aflatoxin B 1 was degraded, while only 20.6±1.4% of aflatoxin B 1 was degraded in the initial conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.