Olefin/paraffin separation is an important but challenging and energy-intensive process in petrochemical industry. The realization of carbons with size-exclusion capability is highly desirable but rarely reported. Herein, we report polydopamine-derived carbons (PDA-Cx, where x refers to the pyrolysis temperature) with tailorable sub-5 Å micropore orifices together with larger microvoids by one-step pyrolysis. The sub-5 Å micropore orifices centered at 4.1–4.3 Å in PDA-C800 and 3.7–4.0 Å in PDA-C900 allow the entry of olefins while entirely excluding their paraffin counterparts, performing a precise cut-off to discriminate olefin/paraffin with sub-angstrom discrepancy. The larger voids enable high C2H4 and C3H6 capacities of 2.25 and 1.98 mmol g−1 under ambient conditions, respectively. Breakthrough experiments confirm that a one-step adsorption-desorption process can obtain high-purity olefins. Inelastic neutron scattering further reveals the host–guest interaction of adsorbed C2H4 and C3H6 molecules in PDA-Cx. This study opens an avenue to exploit the sub-5 Å micropores in carbon and their desirable size-exclusion effect.
Pancreatic cancer is a common gastrointestinal tract malignancy. Currently, the therapeutic strategies for pancreatic cancers include surgery, radiotherapy, and chemotherapy; however, the surgical procedure is invasive, and the overall curative outcomes are poor. Furthermore, pancreatic cancers are usually asymptomatic during early stages and have a high degree of malignancy, along with a high rate of recurrence and metastasis, thereby increasing the risk of mortality. Studies have shown that ferroptosis regulates cell proliferation and tumour growth and reduces drug resistance. Hence, ferroptosis could play a role in preventing and treating cancers. Wogonin is a flavonoid with anticancer activity against various cancers, including pancreatic cancer. It is extracted from the root of Scutellaria baicalensis Georgi. In this study, we show that wogonin inhibits the survival and proliferation of human pancreatic cancer cell lines and induces cell death. We performed RNA-sequencing and analysed the differentially expressed gene and potential molecular mechanism to determine if wogonin reduced cell survival via ferroptosis. Our results showed that wogonin upregulates the levels of Fe2+, lipid peroxidation and superoxide and decreases the protein expression levels of ferroptosis suppressor genes, and downregulates level of glutathione in pancreatic cancer cells. In addition, ferroptosis inhibitors rescue the ferroptosis-related events induced by wogonin, thereby confirming the role of ferroptosis. A significant increase in ferroptosis-related events was observed after treatment with both wogonin and ferroptosis inducer. These results show that wogonin could significantly reduces pancreatic cancer cell proliferation and induce ferroptosis via the Nrf2/GPX4 axis. Therefore, wogonin could be potentially used for treating patients with pancreatic cancer.
Atomic layer etching (ALE) using the environmentally friendly electronic gas fluoromethane (CH3F) is guided for fabricating nanoscale electronic components. The adsorptive purification of CH3F provide a viable direction to remove trace amounts of impurities to produce highly pure CH3F (>99.9999%) for the ALE process. Herein, to remove trace propane (~100 ppm) in CH3F, we report synergetic thermodynamic and kinetic separation of C3H8/CH3F over glucose‐derived carbon molecular sieve CMS‐T, (T as pyrolysis temperature). With pore size slightly larger than the kinetic diameter of C3H8, CMS‐600 allows both strong confined adsorption of C3H8 and a higher diffusion rate of C3H8 over CH3F, resulting in a remarkable separation factor of 51.1. Breakthrough experiment demonstrates a high dynamic production capacity of 457 L kg−1 of 7 N CH3F (<100 ppb of C3H8) over CMS‐600 with excellent cycling stability. Adsorption purification over carbon provides a feasible approach for industrial hyperpurification of electronic gas.
In this work, the effective ultra‐deep catalytic adsorptive desulfurization (CADS) using titanium‐silica gel (Ti‐SG) adsorbent at low Ti loading (<1 wt.%) was investigated. The superior CADS capacity (37.3 mg‐S/g‐A) and high TOF value (432 h−1) for dibenzothiophene (DBT) of Ti‐SG adsorbent were achieved at Ti loading of 0.6% with high dispersion and low titanium coordination. The rate equation of catalytic DBT oxidation was described as rDBT=N2kK[]CHP[]DBT, where the TiOOR was determined as the intermediate to enable the DBT oxidation to form the corresponding sulfone (DBTO2). The effectiveness of CADS using Ti‐SG adsorbents was verified in real diesels with varied sulfur concentrations and O/S ratios in the dynamic adsorption and multicycle regeneration. This work provides insights on using low‐cost bifunctional catalytic adsorbents at low Ti loadings for effective CADS to realize ultra‐deep desulfurization of transportation fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.