Nickel is an essential nutrient for plants. However, the amount of Ni required for normal growth of plants is very low. Hence, with the level of Ni pollution in the environment increasing, it is essential to understand the functional roles and toxic effects of Ni in plants. We briefly review advances in relevant research over the past 20 years. Based on the available data, two new indirect pathways of Ni toxicity in plants are proposed. These are (i) interference with other essential metal ions and (ii) induction of oxidative stress. Research should focus on these mechanisms at the protein and molecular levels. Further research should also be directed at plant species that are capable of accumulating Ni at high concentration, so-called hyperaccumulators. Such species can provide model systems to study the mechanisms of Ni tolerance and can also be used for phytoremediation by removing nickel from polluted environment.
In this study, we aimed to study the phylogeographic pattern of Juniperus sabina, a shrub species commonly occurring in the northern, northwestern and western China. We sequenced three chloroplast DNA fragments (trnL‐trnF, trnS‐trnG, and trnD‐trnT) for 137 individuals from 16 populations of this species. Five chloroplast DNA chlorotypes (A, B, C, D, and E) were identified and they showed no overlapping distribution. The population subdivision is very high (GST= 0.926, NST= 0.980), suggesting a distinct phylogeographic structure (NST > GST, P < 0.05). Phylogenetic analyses of the five chlorotypes were clustered into three clades, consistent with their respective distributions in three separate regions: northern Xinjiang, western Xinjiang, and northern‐northwestern China. However, within each region, the interpopulation differentiation is extremely low. These results as well as statistical tests suggested distinct allopatric differentiations between regional populations and independent glacial refugia for postglacial recolonization. The deserts that developed during the late Quaternary might have acted as effective barriers to promote genetic differentiation among these regions. However, the low diversity dominated by the single chlorotype within each fragmented region suggested that all current populations were derived from a common regional range expansion.
RNA isolation is a prerequisite for the study of the molecular mechanisms of stress tolerance in the desert plant Reaumuria soongorica, an extreme xeric semi-shrub. However, R. soongorica that contains high levels of secondary metabolites that co-precipitate with RNA, making RNA isolation difficult. Here the authors propose a new protocol suitable for isolating high-quality RNA from the leaves of R. soongorica. Based on a CTAB method described by Liu et al., the protocol has been improved as follows: the samples were ground with PVPP to effectively inhibit the oxidation of phenolics, contaminating DNA was removed with DNase I, and NaAc was used along with ethanol for precipitation to enhance the RNA yield and shorten the precipitation time. Gel electrophoresis and spectrophotometric analysis indicated that this isolation method provides RNA with no DNA contamination. Moreover, the yield (183.79 ± 40.36 μg/g) and quality were superior to those using the method of Liu et al., which yields RNA with significant DNA contamination at 126.30 ± 29.43 μg/g. Gene amplification showed that the RNA obtained using this protocol is suitable for use in downstream molecular procedures. This method was found to work equally well for isolating RNA from other desert plants. Thus, it is likely to be widely applicable.
Our understanding of plant responses to enhanced ultraviolet-B (UV-B) radiation has improved over recent decades. However, research on cryptogams is scarce and it remains controversial whether UV-B radiation causes changes in physiology related to photosynthesis. To investigate the effects of supplementary UV-B radiation on photosynthesis and chloroplast ultrastructure in Bryum argenteum Hedw., specimens were cultured for 10 days under four UV-B treatments (2.75, 3.08, 3.25 and 3.41 W m(-2) ), simulating depletion of 0% (control), 6%, 9% and 12% of stratospheric ozone at the latitude of Shapotou, a temperate desert area of northwest China. Analyses showed malondialdehyde content significantly increased, whereas chlorophyll (Chl) fluorescence parameters and Chl contents decreased with increased UV-B intensity. These results corresponded with changes in thylakoid protein complexes and chloroplast ultrastructure. Overall, enhanced UV-B radiation leads to significant decreases in photosynthetic function and serious destruction of the chloroplast ultrastructure of B. argenteum. The degree of negative influences increased with the intensity of UV-B radiation. These results may not only provide a potential mechanism for supplemental UV-B effects on photosynthesis of moss crust, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under future ozone depletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.