Nickel is an essential nutrient for plants. However, the amount of Ni required for normal growth of plants is very low. Hence, with the level of Ni pollution in the environment increasing, it is essential to understand the functional roles and toxic effects of Ni in plants. We briefly review advances in relevant research over the past 20 years. Based on the available data, two new indirect pathways of Ni toxicity in plants are proposed. These are (i) interference with other essential metal ions and (ii) induction of oxidative stress. Research should focus on these mechanisms at the protein and molecular levels. Further research should also be directed at plant species that are capable of accumulating Ni at high concentration, so-called hyperaccumulators. Such species can provide model systems to study the mechanisms of Ni tolerance and can also be used for phytoremediation by removing nickel from polluted environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.