Intestinal morphologic and functional changes occur in human for whom TPN is the sole nutritional source, although the findings in humans are substantially less significant than observed in animal models. The loss of mucosal structure may be sufficient to cause increased intestinal permeability, the clinical significance of which remains to be defined. Enteral nutrition is important in restoring and probably preventing morphologic intestinal changes associated with TPN, and a peptide and free amino acid-based formula supplemented with glutamine and arginine may have some added role. Our findings also suggest sepsis is associated with gut adaptation rather than degradation.
Epidemiological, animal, and cell culture studies have identified boron as a chemopreventative agent in prostate cancer. The present objective was to identify boron-induced changes in the DU-145 human prostate cancer cell line. We show that prolonged exposure to pharmacologically-relevant levels of boric acid, the naturally occurring form of boron circulating in human plasma, induces the following morphological changes in cells: increases in granularity and intracellular vesicle content, enhanced cell spreading and decreased cell volume. Documented increases in b-galactosidase activity suggest that boric acid induces conversion to a senescentlike cellular phenotype. Boric acid also causes a dose-dependent reduction in cyclins A -E, as well as MAPK proteins, suggesting their contribution to proliferative inhibition. Furthermore, treated cells display reduced adhesion, migration and invasion potential, along with F-actin changes indicative of reduced metastatic potential. Finally, the observation of media acidosis in treated cells correlated with an accumulation of lysosome-associated membrane protein type 2 (LAMP-2)-negative acidic compartments. The challenge of future studies will be to identify the underlying mechanism responsible for the observed cellular responses to this natural blood constituent.
Boron affects human steroid hormone levels. Circulating testosterone and estradiol levels have been proposed to modify prostate cancer risk. However, the association between dietary boron intake and the risk of prostate cancer has not been evaluated by any epidemiological study. We explored the association between dietary boron intake and the risk of prostate cancer in the USA. Our analysis was based on data from the third National Health and Nutrition Examination Survey (NHANES III). Crosssectional case-control study design was employed by comparing boron intake of 95 prostate cancer cases with that of 8,720 male controls. After controlling for age, race, education, smoking, body mass index, dietary caloric intake, and alcohol consumption, increased dietary boron intake was associated with a decreased risk of prostate cancer with a doseresponse pattern. The adjusted odds ratio was 0.46 (95% confidence interval: 0.21-0.98) for the highest quartile of boron intake comparing to the lowest quartile (P for trend = 0.0525). The observed association should be interpreted with caution because of the small case sample size and the nature of the cross-sectional study design, but deserve further investigation.
Fish in the embryo-larval stage of development have been shown to be sensitive to boron (B) at both ends of the dose-response curve (1,2). The present study evaluated the health effects of low and high B concentrations on rainbow trout (Oncorhynchus mykiss), a cold water species, and zebrafish (Danio rerio), a warm water species. Rainbow trout embryos were incubated from day 1 until 2 wk posthatch in Type 1 ASTM ultrapure-grade water (12.5 degrees C) supplemented with only B (0-500 microM) as boric acid, or together with CaCO3 (0-2 mM) to increase water hardness. Embryonic growth was stimulated by B in a dose-dependent manner at all Ca concentrations (p < 0.001). Chronic exposures below 9 micromol B/L impaired embryonic growth and above 10 mmol B/L caused death (p < 0.001). Thus, the safe range of exposure for the rainbow trout was between the adverse effect concentrations of 9 micromol B/L and 10 mmol B/L. Zebrafish were maintained for 6 mo in ultrapure water containing <0.2 micromol B/L to determine the effect of low-level exposure. High-level exposure was assessed by exposing zygotes, derived from parents maintained at 46 micromol B/L, to graded concentrations of boric acid up to a concentration of 75 mmol B/L from fertilization until they were free feeding (96 h). Fertilization occurred, but zygotes failed to survive when water contained <0.2 micromol B/L (p < 0.001). Death occurred at and above 9.2 mmol B/L. Thus, the safe range of B exposure for zebrafish was between the adverse effect concentrations of 0.2 micromol B/L and 9.2 mmol B/L. The dose-response for both species was thus U-shaped.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.