ATSAS is a comprehensive software suite for the analysis of small-angle scattering data from dilute solutions of biological macromolecules or nanoparticles. It contains applications for primary data processing and assessment, ab initio bead modelling, and model validation, as well as methods for the analysis of flexibility and mixtures. In addition, approaches are supported that utilize information from X-ray crystallography, nuclear magnetic resonance spectroscopy or atomistic homology modelling to construct hybrid models based on the scattering data. This article summarizes the progress made during the 2.5-2.8 ATSAS release series and highlights the latest developments. These include AMBIMETER, an assessment of the reconstruction ambiguity of experimental data; DATCLASS, a multiclass shape classification based on experimental data; SASRES, for estimating the resolution of ab initio model reconstructions; CHROMIXS, a convenient interface to analyse in-line size exclusion chromatography data; SHANUM, to evaluate the useful angular range in measured data; SREFLEX, to refine available high-resolution models using normal mode analysis; SUPALM for a rapid superposition of low-and highresolution models; and SASPy, the ATSAS plugin for interactive modelling in PyMOL. All these features and other improvements are included in the ATSAS release 2.8, freely available for academic users from https://www.emblhamburg.de/biosaxs/software.html.
The ATSAS software suite encompasses a number of programs for the processing, visualization, analysis and modelling of small-angle scattering data, with a focus on the data measured from biological macromolecules. Here, new developments in the ATSAS 3.0 package are described. They include IMSIM, for simulating isotropic 2D scattering patterns; IMOP, to perform operations on 2D images and masks; DATRESAMPLE, a method for variance estimation of structural invariants through parametric resampling; DATFT, which computes the pair distance distribution function by a direct Fourier transform of the scattering data; PDDFFIT, to compute the scattering data from a pair distance distribution function, allowing comparison with the experimental data; a new module in DATMW for Bayesian consensus-based concentration-independent molecular weight estimation; DATMIF, an ab initio shape analysis method that optimizes the search model directly against the scattering data; DAMEMB, an application to set up the initial search volume for multiphase modelling of membrane proteins; ELLLIP, to perform quasi-atomistic modelling of liposomes with elliptical shapes; NMATOR, which models conformational changes in nucleic acid structures through normal mode analysis in torsion angle space; DAMMIX, which reconstructs the shape of an unknown intermediate in an evolving system; and LIPMIX and BILMIX, for modelling multilamellar and asymmetric lipid vesicles, respectively. In addition, technical updates were deployed to facilitate maintainability of the package, which include porting the PRIMUS graphical interface to Qt5, updating SASpy – a PyMOL plugin to run a subset of ATSAS tools – to be both Python 2 and 3 compatible, and adding utilities to facilitate mmCIF compatibility in future ATSAS releases. All these features are implemented in ATSAS 3.0, freely available for academic users at https://www.embl-hamburg.de/biosaxs/software.html.
An integrated environment for biological small-angle X-ray scattering (BioSAXS) at the high-brilliance P12 synchrotron beamline of the EMBL (DESY, Hamburg) allows for a broad range of solution scattering experiments. Automated hardware and software systems have been designed to ensure that data collection and processing are efficient, streamlined and user friendly.
alpha/beta Hydrolase fold proteins are an important, diverse, widespread group of enzymes not yet fully exploited by structural biologists. We describe the current state of knowledge of this family, and suggest a smaller definition of the required core and some possible future avenues of exploration.
Small-angle X-ray and neutron scattering (SAXS and SANS) are fundamental tools used to study the global shapes of proteins, nucleic acids, macromolecular complexes and assemblies in solution. Due to recent advances in instrumentation and computational methods, the quantity of experimental scattering data and subsequent publications is increasing dramatically. The need for a global repository allowing investigators to locate and access experimental scattering data and associated models was recently emphasized by the wwPDB small-angle scattering task force (SAStf). The small-angle scattering biological data bank (SASBDB) www.sasbdb.org has been designed in accordance with the plans of the SAStf as part of a future federated system of databases for biological SAXS and SANS. SASBDB is a comprehensive repository of freely accessible and fully searchable SAS experimental data and models that are deposited together with the relevant experimental conditions, sample details and instrument characteristics. At present the quality of deposited experimental data and the accuracy of models are manually curated, with future plans to integrate automated systems as the database expands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.