The aim of this work was to purify and partially characterize a mannose recognition lectin from Nile tilapia (Oreochromis niloticus) serum, named OniL. OniL was isolated through precipitation with ammonium sulfate and affinity chromatography (Concanavalin A-Sepharose 4B). In addition, we evaluated carbohydrate specificity, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profiles, and in vitro immunomodulatory activity on mice splenocyte experimental cultures through cytotoxic assays and cytokine production. The ammonium sulfate fraction F2 showed the highest specific hemagglutinating activity (331) and was applied to affinity matrix. Adsorbed proteins (OniL) were eluted with methyl-α-D: -mannopyranoside. OniL, a 17-kDa protein by SDS-PAGE constituted by subunits of 11 and 6.6 kDa, showed highest affinity for methyl-α-D: -mannopyranoside and D: -mannose. Immunological assays, in vitro, showed that OniL did not show cytotoxicity against splenocytes, induced higher IFN-γ production and lower IL-10 as well as nitrite release. In conclusion, OniL lectin was successfully purified and showed a preferential Th1 response in mice splenocytes.
This work reports the isolation of a serum lectin from cobia fish (Rachycentron canadum) named RcaL. Immunomodulatory activity on mice splenocyte experimental cultures through cytotoxic assays and cytokine production were also performed. RcaL was obtained through precipitation with ammonium sulphate and affinity chromatography on a Concanavalin A-Sepharose 4B column. The ammonium sulphate fraction F3 showed the highest specific hemagglutinating activity and was applied to affinity chromatography. The lectin was eluted with methyl-α-D-mannopyranoside. RcaL showed highest affinity for methyl-α-D-mannopyranoside and D-mannose; eluted fractions of RcaL agglutinated rabbit erythrocytes (titre, 128(-1)) retained 66 % of chromatographed lectin activity, and the obtained purification factor was 1.14. Under reducing conditions, a polypeptide band of 19.2 kDa was revealed in sodium dodecyl sulphate polyacrylamide gel electrophoresis (PAGE). PAGE confirmed RcaL as an acidic protein revealed in a single band. Cytotoxic and immunomodulatory assays with RcaL in mice splenocyte cultures showed that the lectin was not cytotoxic and induced higher interferon gamma and nitric oxide production in splenocyte cultures. Purified RcaL induced preferential Th1 response, suggesting that it acts as an immunomodulatory compound.
Background:
Lectins have been studied in recent years due to their immunomodulatory
activities.
Objective:
We purified a lectin named OniL from tilapia fish (Oreochromis niloticus) and here we
analyzed the cell proliferation and cytokine production in Balb/c mice splenocytes.
Methods:
Cells were stimulated in vitro in 24, 48, 72 hours and 6 days with different concentrations
of OniL and Con A. Evaluation of cell proliferation was performed through [3H]-thymidine
incorporation, cytokines were investigated using ELISA assay and cell viability assay was
performed by investigation of damage through signals of apoptosis and necrosis.
Results:
OniL did not promote significant cell death, induced high mitogenic activity in relation to
control and Con A and stimulated the cells to release high IL-2 and IL-6 cytokines.
Conclusion:
These findings suggest that, like Con A, OniL lectin can be used as a mitogenic agent
in immunostimulatory assays.
Titanium and its alloys are used as biomaterials for medical and dental applications, due to their mechanical and physical properties. Surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. In this work, titanium dioxide nanotubes (TiO2NTs) were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favor the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successful incorporation of OniL on the surface of TiO2NTs, by spin coating, was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE), and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2NTs were successfully synthesized in a regular and well-distributed way. The modification of TiO2NTs with OniL favored adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.
Titanium and its alloys are used biomaterials for medical and dental applications, due to their mechanical and physical properties. The surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. Titanium dioxide nanotubes (TiO2NTs) have excellent bioactivity inducing cell adhesion, spreading, growth and differentiation. In this work, TiO2NTs were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favour the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successfully incorporation of OniL on the surface of TiO2NTs by spin coating was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE) and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2-NTs were successfully synthesized in a regular and well-distributed way. The functionalization of TiO2-NTs with OniL favoured adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.