Culex pipiens quinquefasciatus Say mosquitoes from a laboratory colony were exposed to artificial blood meals containing West Nile virus (WNV) and held at incubation temperatures approximating average daily temperatures that occur during Florida arboviral periods. Mosquitoes fed blood meals containing 6.2 logs plaque-forming units (pfu) WNV/mL and held at 25 degrees C, 28 degrees C, or 30 degrees C for 13 days exhibited significantly different rates of infection (30%, 52%, 93%) and dissemination (33%, 22%, 81%) across temperatures. In a separate experiment, Cx. p. quinquefasciatus mosquitoes were provided artificial blood meals with graded doses of WNV from 3.7 to 5.8 logs pfu/mL and maintained at 28 degrees C for 13 days. Rates of infection increased as a function of virus dose, but neither body titers nor dissemination rates were significantly different for mosquitoes that were infected by ingesting different amounts of WNV. Our findings indicate that efficiency of WNV infection and dissemination, and thereby transmission, in Cx. p. quinquefasciatus populations similar to our tested colony may also be diminished when fed blood meals containing less than 5.8 logs pfu WNV/mL and when environmental temperature falls below 30 degrees C. The relationship between the infection rate and dissemination rate changed at different temperatures. This relationship is likely complex and dependent on diverse interactions between factors such as incubation temperature and viremia, which should also be assessed for field populations.
Complex interactions between environmental and biological factors influence the susceptibility of Culex pipiens quinquefasciatus to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown.
Between 2014 and 2016 more than 3,800 imported human cases of chikungunya fever in Florida highlight the high risk for local transmission. To examine the potential for sustained local transmission of chikungunya virus (CHIKV) in Florida we tested whether local populations of Aedes aegypti and Aedes albopictus show differences in susceptibility to infection and transmission to two emergent lineages of CHIKV, Indian Ocean (IOC) and Asian genotypes (AC) in laboratory experiments. All examined populations of Ae. aegypti and Ae. albopictus mosquitoes displayed susceptibility to infection, rapid viral dissemination into the hemocoel, and transmission for both emergent lineages of CHIKV. Aedes albopictus had higher disseminated infection and transmission of IOC sooner after ingesting CHIKV infected blood than Ae. aegypti. Aedes aegypti had higher disseminated infection and transmission later during infection with AC than Ae. albopictus. Viral dissemination and transmission of AC declined during the extrinsic incubation period, suggesting that transmission risk declines with length of infection. Interestingly, the reduction in transmission of AC was less in Ae. aegypti than Ae. albopictus, suggesting that older Ae. aegypti females are relatively more competent vectors than similar aged Ae. albopictus females. Aedes aegypti originating from the Dominican Republic had viral dissemination and transmission rates for IOC and AC strains that were lower than for Florida vectors. We identified small-scale geographic variation in vector competence among Ae. aegypti and Ae. albopictus that may contribute to regional differences in risk of CHIKV transmission in Florida.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.