Renewed interest in active experiments with relativistic particle beams in space has led to the development of solid-state radio-frequency (RF) linear accelerators (linac) that can deliver MeV electron beams but operate with low-voltage DC power supplies. The solid-state RF amplifiers used to drive the accelerator are known as high-electron mobility transistors (HEMTs), and at C-band (5-6 GHz) are capable of generating up to 500 watts of RF power at 10% duty factor in a small package, i.e., the size of a postage stamp. In operation, the HEMTs are powered with 50 V DC as their bias voltage; they thus can tap into the spacecraft batteries or electrical bus as the primary power source. In this paper we describe the initial testing of a compact space-borne RF accelerator consisting of individual C-band cavities, each independently powered by a gallium nitride (GaN) HEMT. We show preliminary test results that demonstrate the beam acceleration in a single C-band cavity powered by a single HEMT operating at 10% duty factor. An example of active beam experiments in space that could benefit from the HEMT-powered accelerators is the proposed Magnetosphere-Ionosphere Connection (CONNEX) experiment (Dors et al., 2017).
Abstract.We designed an experiment to conduct a detailed investigation of the higher order mode spectrum in a roomtemperature traveling-wave photonic band gap (PBG) accelerating structure at 11.7 GHz. It has been long recognized that PBG structures have great potential in reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in room-temperature PBG structures was conducted at MIT in 2005. Since then, the importance of that device has been recognized by many research institutions. However, the full experimental characterization of the wakefield spectrum in a beam test has not been performed to date. The Argonne Wakefield Accelerator (AWA) test facility at the Argonne National Laboratory represents a perfect site where this evaluation could be conducted with a single high charge electron bunch and with a train of bunches. The PBG structure was built and consists of sixteen 2 /3 traveling-wave cells, including two coupler cells. In this paper we will describe fabrication and tuning of the PBG cells, and the results of the final cold-test of the traveling-wave accelerating structure. Next we will discuss the plan for the wakefield experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.