The lipid mediator lysophosphatidic acid (LPA) plays a role in cancer progression and signals via specific G protein-coupled receptors, LPA [1][2][3] . LPA has been shown to enhance the metastasis of breast carcinoma cells to bone. However, the mechanisms by which LPA receptors regulate breast cancer cell migration and invasion remain unclear. Breast cancer cell proliferation has been shown to be stimulated by Ral GTPases, a member of the Ras superfamily. Ral activity can be regulated by the multifunctional protein β-arrestin. We now show that HS578T and MDA-MB-231 breast cancer cells and MDA-MB-435 melanoma cells have higher expression of β-arrestin 1 mRNA compared with the nontumorigenic mammary MCF-10A cells. Moreover, we found that the mRNA levels of LPA 1 , LPA 2 , β-arrestin 2, and Ral GTPases are elevated in the advanced stages of breast cancer. LPA stimulates the migration and invasion of MDA-MB-231 cells, but not of MCF-10A cells, and this is mediated by pertussis toxin-sensitive G proteins and LPA 1 . However, ectopic expression of LPA 1 in MCF-10A cells caused these cells to acquire an invasive phenotype. Gene knockdown of either β-arrestin or Ral proteins significantly impaired LPA-stimulated migration and invasion. Thus, our data show a novel role for β-arrestin/Ral signaling in mediating LPA-induced breast cancer cell migration and invasion, two important processes in metastasis. (Mol Cancer Res 2009;7 (7):1064-77)
Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness.
RSV is an infrequent cause of ILI during periods of influenza virus circulation but can cause severe complications in hospitalized adults. Risk factors for RSV detection in adults hospitalized with ILI include cancer and immunosuppressive treatment. Specific immunization and antiviral therapy might benefit patients at risk.
Na,K-ATPase is a plasma membrane enzyme that plays a critical role in eutherian blastocoel formation (cavitation) by pumping Na+ into the extracellular space enclosed by the trophectoderm. Previous experiments with the mouse had shown that the alpha (catalytic) subunit of the enzyme becomes detectable by immunocytochemistry in the late morula, just prior to the onset of cavitation. In the present study we have used cDNAs corresponding to three mRNA isoforms of the alpha subunit and a beta subunit to determine which genes are expressed during preimplantation development and to explore the timing of their expression. Of the three alpha subunit cDNAs tested by Northern blot hybridization with blastocyst RNA, only alpha 1 produced a hybridization signal, recognizing a single mRNA about 4 kb in length. This mRNA is relatively abundant in zygotes but barely detectable by the 2-cell stage and then accumulates steadily thereafter to reach its preimplantation maximum in blastocysts. The beta 1 cDNA detected mRNA of about 2.6-2.8 kb. This mRNA is present in zygotes but could not be detected in 2-, 4-, or 8-cell stages; it is present at a low level in late morulae and is abundant in blastocysts. The temporal profile of accumulation of beta 1 mRNA thus matches more closely than does alpha 1 the timing of appearance of the catalytic subunit. This suggests that the beta subunit may regulate production of the holoenzyme and hence the timing of cavitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.