BACKGROUND The study of autoinflammatory diseases has uncovered mechanisms underlying cytokine dysregulation and inflammation. METHODS We analyzed the DNA of an index patient with early-onset systemic inflammation, cutaneous vasculopathy, and pulmonary inflammation. We sequenced a candidate gene, TMEM173, encoding the stimulator of interferon genes (STING), in this patient and in five unrelated children with similar clinical phenotypes. Four children were evaluated clinically and immunologically. With the STING ligand cyclic guanosine monophosphate–adenosine monophosphate (cGAMP), we stimulated peripheral-blood mononuclear cells and fibroblasts from patients and controls, as well as commercially obtained endothelial cells, and then assayed transcription of IFNB1, the gene encoding interferon-β, in the stimulated cells. We analyzed IFNB1 reporter levels in HEK293T cells cotransfected with mutant or nonmutant STING constructs. Mutant STING leads to increased phosphorylation of signal transducer and activator of transcription 1 (STAT1), so we tested the effect of Janus kinase (JAK) inhibitors on STAT1 phosphorylation in lymphocytes from the affected children and controls. RESULTS We identified three mutations in exon 5 of TMEM173 in the six patients. Elevated transcription of IFNB1 and other gene targets of STING in peripheral-blood mono-nuclear cells from the patients indicated constitutive activation of the pathway that cannot be further up-regulated with stimulation. On stimulation with cGAMP, fibro-blasts from the patients showed increased transcription of IFNB1 but not of the genes encoding interleukin-1 (IL1), interleukin-6 (IL6), or tumor necrosis factor (TNF). HEK293T cells transfected with mutant constructs show elevated IFNB1 reporter levels. STING is expressed in endothelial cells, and exposure of these cells to cGAMP resulted in endothelial activation and apoptosis. Constitutive up-regulation of phosphorylated STAT1 in patients’ lymphocytes was reduced by JAK inhibitors. CONCLUSIONS STING-associated vasculopathy with onset in infancy (SAVI) is an autoinflammatory disease caused by gain-of-function mutations in TMEM173.
As vascular disease is complex and the various manifestations are influenced by differences in vascular bed architecture, exposure to shear and mechanical forces, cell types involved, and inflammatory responses, in vivo models are necessary to recapitulate the complex physiology and dynamic cellular interactions during pathogenesis. Murine knockout models are commonly used tools for investigators to study the role of a specific gene or pathway in multifaceted disease traits. Although valuable, these models are not perfect, and this is particularly true in regard to CD73 (cluster of differentiation 73), the extracellular enzyme that generates adenosine from AMP. At baseline, CD73-deficient mice do not present with an overt phenotype, whereas CD73-deficient humans present with the complex phenotype of vascular calcification, arteriomegaly and tortuosity, and calcification in small joints. In this review, we highlight the differences between the mouse and human systems and discuss the potential to leverage findings in mice to inform us on the human conditions.
Introduction Lack of effective pharmacological treatment makes valvular calcification a significant clinical problem in patients with valvular disease and bioprosthetic/mechanical valve replacement therapies. Elevated levels of reactive oxygen species (ROS) in valve tissue have been identified as a prominent hallmark and driving factor for valvular calcification. However, the therapeutic value of ROS-modulating agents for valvular calcification remains elusive. We hypothesized that ROS-modulating shape-specific cerium oxide nanoparticles (CNPs) will inhibit oxidative stress-induced valvular calcification. CNPs are a class of self-regenerative ROS-modulating agents, which can switch between Ce3+ and Ce4+ in response to oxidative microen-vironment. In this work, we developed oxidative stress-induced valve calcification model using two patient-derived stenotic valve interstitial cells (hVICs) and investigated the therapeutic effect of shape-specific CNPs to inhibit hVIC calcification. Methods Human valvular interstitial cells (hVICs) were obtained from a normal healthy donor and two patients with calcified aortic valves. hVICs were characterized for their phenotypic (mesenchymal, myofibroblast and osteoblast) marker expression by qRT-PCR and antioxidant enzymes activity before and after exposure to hydrogen peroxide (H2O2)-induced oxidative stress. Four shape-specific CNPs (sphere, short rod, long rod, and cube) were synthesized via hydrothermal or ultra-sonication method and characterized for their biocompatibility in hVICs by alamarBlue® assay, and ROS scavenging ability by DCFH-DA assay. H2O2 and inorganic phosphate (Pi) were co-administrated to induce hVIC calcification in vitro as demonstrated by Alizarin Red S staining and calcium quantification. The effect of CNPs on inhibiting H2O2-induced hVIC calcification was evaluated. Results hVICs isolated from calcified valves exhibited elevated osteoblast marker expression and decreased antioxidant enzyme activities compared to the normal hVICs. Due to the impaired antioxidant enzyme activities, acute H2O2-induced oxidative stress resulted in higher ROS levels and osteoblast marker expression in both diseased hVICs when compared to the normal hVICs. Shape-specific CNPs exhibited shape-dependent abiotic ROS scavenging ability, and excellent cytocompatibility. Rod and sphere CNPs scavenged H2O2-induced oxidative stress in hVICs in a shape- and dose-dependent manner by lowering intracellular ROS levels and osteoblast marker expression. Further, CNPs also enhanced activity of antioxidant enzymes in hVICs to combat oxidative stress. Cube CNPs were not effective ROS scavengers. The addition of H2O2 in the Pi-induced calcification model further increased calcium deposition in vitro in a time-dependent manner. Co-administration of rod CNPs with Pi and H2O2 mitigated calcification in the diseased hVICs. Conclusions We demonstrated that hVICs derived from calcified valves exhibited impaired antioxidant defense mechanisms and were more susceptible to oxidative stress th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.