We present new observations of a controlled transition to turbulence in a fundamental but little-studied regime: circular Couette flow with only the outer cylinder rotating. Our apparatus consists of an outer cylinder of fixed radius and three inner cylinders having different radii that are used interchangeably to study the effect of flow curvature. With the smallest inner cylinder the end-cap configuration (vertical boundary conditions) may also be varied. The turbulent transition is found to be sensitive to both gap width and end-cap configuration, with wider gaps transitioning at higher rotation rates. All configurations are observed to transition with hysteresis and intermittency. A laser Doppler velocimetry (LDV)-based study of the azimuthal velocity profile as a function of gap width and rotation rate reveals that turbulence, once initiated, is confined to regions of significant shear. For wider gap widths, the radial location of these shear layers is determined by the chosen end-cap configuration. This, in turn, affects the transition Reynolds number, which we posit to be radially dependent. The narrow-gap case in particular features spiral turbulence, whose properties are found to be similar to observations of the phenomenon in related shear flows. The velocity profile in this case is correlated with overlapping boundary layers, suggesting a coupling mechanism for the origin of laminar-turbulent banding phenomena.
Modern technology is founded on the intimate understanding of how to utilize and control electrons. Next to electrons, nature uses phonons, quantized vibrations of an elastic structure, to carry energy, momentum and even information through solids. Phonons permeate the crystalline components of modern technology, yet in terms of technological utilization phonons are far from being on par with electrons. Here we demonstrate how phonons can be employed to render a single quantum dot pair optically transparent. This phonon-induced transparency is realized via the formation of a molecular polaron, the result of a Fano-type quantum interference, which proves that we have accomplished making typically incoherent and dissipative phonons behave in a coherent and non-dissipative manner. We find the transparency to be widely tunable by electronic and optical means. Thereby we show amplification of weakest coupling channels. We further outline the molecular polaron's potential as a control element in phononic circuitry architecture.
We demonstrate strain-induced coupling between a hole spin in a quantum dot and mechanical motion of a cantilever. The optical transitions of quantum dots integrated into GaAs mechanical resonators are measured synchronously with the motion of the driven resonators. In a Voigt magnetic field, both electron and hole spin splittings are measured, showing negligible change for the electron spin but a large change for the hole spin of up to 36%. This large effect is attributed to the stronger spin orbit interaction of holes compared to electrons.
Optical coupling between quantum dots and photonic crystal cavities and waveguides has been studied for many years in order to explore interesting physics and to advance quantum technologies. Here, we demonstrate strain-based coupling between mechanical motion of a photonic crystal membrane and embedded single InGaAs quantum dots. The response to high frequency mechanical vibration is measured for a series of quantum dots along the length of a photonic crystal waveguide for several flexural modes by optically driving the membrane while measuring high resolution time-resolved photoluminescence. The position-dependent response is similar to the measured and calculated displacement profile of the membrane but falls off less rapidly at higher frequencies. These results indicate potential for nanoscale strain sensing with high bandwidth and sensitivity.
High resolution optical spectroscopy methods are demanding in terms of either technology, equipment, complexity, time or a combination of these. Here we demonstrate an optical spectroscopy method that is capable of resolving spectral features beyond that of the spin fine structure and homogeneous linewidth of single quantum dots (QDs) using a standard, easy-to-use spectrometer setup. This method incorporates both laser and photoluminescence spectroscopy, combining the advantage of laser line-width limited resolution with multi-channel photoluminescence detection. Such a scheme allows for considerable improvement of resolution over that of a common single-stage spectrometer. The method uses phonons to assist in the measurement of the photoluminescence of a single quantum dot after resonant excitation of its ground state transition. The phonon's energy difference allows one to separate and filter out the laser light exciting the quantum dot. An advantageous feature of this method is its straight forward integration into standard spectroscopy setups, which are accessible to most researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.