New conversation topics and functionalities are constantly being added to conversational AI agents like Amazon Alexa and Apple Siri. As data collection and annotation is not scalable and is often costly, only a handful of examples for the new functionalities are available, which results in poor generalization performance. We formulate it as a Few-Shot Integration (FSI) problem where a few examples are used to introduce a new intent. In this paper, we study six feature space data augmentation methods to improve classification performance in FSI setting in combination with both supervised and unsupervised representation learning methods such as BERT. Through realistic experiments on two public conversational datasets, SNIPS, and the Facebook Dialog corpus, we show that data augmentation in feature space provides an effective way to improve intent classification performance in fewshot setting beyond traditional transfer learning approaches. In particular, we show that (a) upsampling in latent space is a competitive baseline for feature space augmentation (b) adding the difference between two examples to a new example is a simple yet effective data augmentation method.
Meta-learning has recently been proposed to learn models and algorithms that can generalize from a handful of examples. However, applications to structured prediction and textual tasks pose challenges for meta-learning algorithms. In this paper, we apply two metalearning algorithms, Prototypical Networks and Reptile, to few-shot Named Entity Recognition (NER), including a method for incorporating language model pre-training and Conditional Random Fields (CRF). We propose a task generation scheme for converting classical NER datasets into the few-shot setting, for both training and evaluation. Using three public datasets, we show these meta-learning algorithms outperform a reasonable fine-tuned BERT baseline. In addition, we propose a novel combination of Prototypical Networks and Reptile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.