The origins for abrupt adhesion loss at a critical relative humidity (RH) for polymeric adhesives bonded to inorganic surfaces have been explored using a model poly(methyl methacrylate) (PMMA) film on glass. The interfacial and bulk water concentrations within the polymer film as a function of D 2O partial pressure were quantified using neutron reflectivity. Adhesion strength of these PMMA/SiO 2 interfaces under the same conditions was quantified using a shaft loaded blister test. A drop in adhesion strength was observed at a critical RH, and at this same RH, a discontinuity in the bulk moisture concentration occurred. The moisture concentration near the interface was higher than that in the bulk PMMA, and at the critical RH, the breadth of the interfacial water concentration distribution as a function of distance from the SiO 2/PMMA interface increased dramatically. We propose a mechanism for loss of adhesion at a critical RH based upon the interplay between bulk swelling induced stress and weakening of the interfacial bond by moisture accumulation at the PMMA/SiO 2 interface.
In recent years, poly(p-phenylene-2,6-benzobisoxazole) (PBO) fibers have become prominent in high strength applications such as body armor, ropes and cables, and recreational equipment. The objectives of this study were to expose woven PBO body armor panels to elevated temperature and moisture, and to analyze the chemical, morphological and mechanical changes in PBO yarns extracted from the panels. A 30 % decrease in yarn tensile strength, which was correlated to changes in the infrared peak absorbance of key functional groups in the PBO structure, was observed during the 26 week elevated temperature/elevated moisture aging period. Substantial changes in chemical structure were observed via infrared spectroscopy, as well as changes in polymer morphology using microscopy and neutron scattering. When the panels were removed to an ultra-dry environment for storage for 47 weeks, no further decreases in tensile strength degradation were observed. In a follow-on study, fibers were sealed in argon-filled glass tubes and exposed to elevated temperature; less than a 4 % decrease in tensile strength was observed after 30 weeks.
This publication details the four major phases of analytical development work, coupled with several additional side studies, undertaken by the Office of Law Enforcement Standards in writing the Flexible Armor Conditioning Protocol in NIJ Standard-0101.06. This protocol partially fulfills a requirement to develop a revised performance standard for body armor to address a number of concerns, one of which was the ability of the armor to withstand environmental and wear conditions that an armor might see over its lifetime. This document details how the protocol was shortened from 9 weeks in the first phase of development to 10 days, as it appears in the current version of the standard. All major classes of ballistic materials were tested in the protocol development. The conditions selected are found to be quite detrimental to armors of a design that previously had problems in the field, but are not detrimental to armors of known good design. It is important to note that the protocol does not represent an exact period of time in the field, but efforts to correlate the protocol to a period of time in the field are the subject of future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.