Atomic force microscopy (AFM) has been used to study the morphology and microstructure of an amine-cured epoxy before and after outdoor exposure. Measurements were made from samples prepared in an essentially CO 2 -free, H 2 O-free glove box and from samples prepared in ambient conditions. For those prepared in a CO 2 -free glove box, AFM imaging was conducted on (1) an unexposed air/coating surface, (2) an unexposed coating bulk, (3) an unexposed coating/substrate interface, and (4) a field exposed air/coating surface. For samples prepared in ambient conditions, only the unexposed air/coating surface was investigated. The same regions of the exposed samples were scanned periodically by the AFM to monitor changes in the surface morphology of the coating as UV exposure progressed. Small angle neutron scattering and Fourier transform infrared spectroscopy (FTIR) studies were performed to verify the microstructure and to follow chemical changes during outdoor exposure, respectively. The results have shown that amine blushing, which occurs only under ambient conditions, had a significant effect on the surface morphology and microstructure of the epoxy. The surface morphology of the samples prepared under CO 2 -free, dry conditions was generally smooth and homogeneous. However, the interface and the bulk samples clearly revealed a two-phase structure consisting of bright nodular domains and dark interstitial regions, indicating an inhomogeneous microstructure. Such heterogeneous structure of the bulk was in good agreement with results obtained by small angle neutron scattering of unexposed samples and by AFM phase imaging of the degraded sample surface. The relationship between submicrometer physical changes and molecular chemical degradation is discussed.
An ultraviolet (UV) weathering device based on integrating sphere technology has been designed, fabricated, and implemented for studying the accelerated weathering of polymers. This device has the capability of irradiating multiple test specimens with uniform, high intensity UV radiation while simultaneously subjecting them to a wide range of precisely and independently controlled temperature and relative humidity environments. This article describes the integrating sphere-based weathering system, its ability to precisely control temperature and relative humidity, and its ability to produce a highly uniform UV irradiance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.