Indirect illumination is an important element for realistic image synthesis, but its computation is expensive and highly dependent on the complexity of the scene and of the BRDF of the involved surfaces. While off-line computation and pre-baking can be acceptable for some cases, many applications (games, simulators, etc.) require real-time or interactive approaches to evaluate indirect illumination. We present a novel algorithm to compute indirect lighting in real-time that avoids costly precomputation steps and is not restricted to low-frequency illumination. It is based on a hierarchical voxel octree representation generated and updated on the fly from a regular scene mesh coupled with an approximate voxel cone tracing that allows for a fast estimation of the visibility and incoming energy. Our approach can manage two light bounces for both Lambertian and glossy materials at interactive framerates (25-70FPS). It exhibits an almost scene-independent performance and can handle complex scenes with dynamic content thanks to an interactive octree-voxelization scheme. In addition, we demonstrate that our voxel cone tracing can be used to efficiently estimate Ambient Occlusion.
Figure 1: Top-left: rendering a voxelized forest at decreasing levels of detail (left to right). Bottom-right: visualization of the voxel structure at the matching resolutions. We use the SGGX microflake distribution to represent volumetric anisotropic materials. Our representation supports downscaling and interpolation, resulting in smooth and antialiased renderings at multiple scales. AbstractWe introduce the Symmetric GGX (SGGX) distribution to represent spatially-varying properties of anisotropic microflake participating media. Our key theoretical insight is to represent a microflake distribution by the projected area of the microflakes. We use the projected area to parameterize the shape of an ellipsoid, from which we recover a distribution of normals. The representation based on the projected area allows for robust linear interpolation and prefiltering, and thanks to its geometric interpretation, we derive closed form expressions for all operations used in the microflake framework.We also incorporate microflakes with diffuse reflectance in our theoretical framework. This allows us to model the appearance of rough diffuse materials in addition to rough specular materials. Finally, we use the idea of sampling the distribution of visible normals to design a perfect importance sampling technique for our SGGX microflake phase functions. It is analytic, deterministic, simple to implement, and one order of magnitude faster than previous work.
We propose an algorithm for the real time realistic simulation of multiple anisotropic scattering of light in a volume. Contrary to previous real-time methods we account for all kinds of light paths through the medium and preserve their anisotropic behavior.Our approach consists of estimating the energy transport from the illuminated cloud surface to the rendered cloud pixel for each separate order of multiple scattering. We represent the distribution of light paths reaching a given viewed cloud pixel with the mean and standard deviation of their entry points on the lit surface, which we call the collector area. At rendering time for each pixel we determine the collector area on the lit cloud surface for different sets of scattering orders, then we infer the associated light transport. The fast computation of the collector area and light transport is possible thanks to a preliminary analysis of multiple scattering in planeparallel slabs and does not require slicing or marching through the volume.Rendering is done efficiently in a shader on the GPU, relying on a cloud surface mesh augmented with a Hypertexture to enrich the shape and silhouette. We demonstrate our model with the interactive rendering of detailed animated cumulus and cloudy sky at 2-10 frames per second.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.