BackgroundThe purpose of this study was to determine the orthotic and therapeutic effects of daily community applied FES to the ankle dorsiflexors in a randomized controlled trial. We hypothesized that children receiving the eight-week FES treatment would demonstrate orthotic and therapeutic effects in gait and spasticity as well as better community mobility and balance skills compared to controls not receiving FES.MethodsThis randomized controlled trial involved 32 children (mean age 10 yrs 3 mo, SD 3 yrs 3 mo; 15 females, 17 males) with unilateral spastic cerebral palsy and a Gross Motor Function Classification System of I or II randomly assigned to a FES treatment group (n = 16) or control group (n = 16). The treatment group received eight weeks of daily FES (four hours per day, six days per week) and the control group received usual orthotic and therapy treatment. Children were assessed at baseline, post FES treatment (eight weeks) and follow-up (six weeks after post FES treatment). Outcome measures included lower limb gait mechanics, clinical measures of gastrocnemius spasticity and community mobility balance skills.ResultsParticipants used the FES for a mean daily use of 6.2 (SD 3.2) hours over the eight-week intervention period. With FES, the treatment group demonstrated a significant (p < 0.05) increase in initial contact ankle angle (mean difference 11.9° 95 % CI 6.8° to 17.1°), maximum dorsiflexion ankle angle in swing (mean difference 8.1° 95 % CI 1.8° to 14.4°) normalized time in stance (mean difference 0.27 95 % CI 0.05 to 0.49) and normalized step length (mean difference 0.06 95 % CI 0.003 to 0.126) post treatment compared to the control group. Without FES, the treatment group significantly increased community mobility balance scores at post treatment (mean difference 8.3 units 95 % CI 3.2 to 13.4 units) and at follow-up (mean difference 8.9 units 95 % CI 3.8 to13.9 units) compared to the control group. The treatment group also had significantly reduced gastrocnemius spasticity at post treatment (p = 0.038) and at follow-up (dynamic range of motion mean difference 6.9°, 95 % CI 0.4° to 13.6°; p = 0.035) compared to the control group.ConclusionThis study documents an orthotic effect with improvement in lower limb mechanics during gait. Therapeutic effects i.e. without FES were observed in clinical measures of gastrocnemius spasticity, community mobility and balance skills in the treatment group at post treatment and follow-up. This study supports the use of FES applied during daily walking activities to improve gait mechanics as well as to address community mobility issues among children with unilateral spastic cerebral palsy.Trial registrationAustralian New Zealand Clinical Trials Register ACTRN12614000949684. Registered 4 September 2014.Electronic supplementary materialThe online version of this article (doi:10.1186/s12887-015-0472-y) contains supplementary material, which is available to authorized users.
Muscle atrophy after first botulinum neurotoxin A (BoNT-A) exposure in children with cerebral palsy is noted. Mild BoNT-A-induced muscle atrophy is still apparent 6 months after BoNT-A exposure. Hypertrophy is evident in soleus after gastrocnemius BoNT-A exposure. Total plantarflexor volume is unchanged.
driving low back discomfort police officers active lumbar system massage automobile seat
Background The study of falls and fall prevention/intervention devices requires the recording of true falls incidence. However, true falls are rare, random, and difficult to collect in real world settings. A system capable of producing falls in an ecologically valid manner will be very helpful in collecting the data necessary to advance our understanding of the neuro and musculoskeletal mechanisms underpinning real-world falls events. Methods A fall inducing movable platform (FIMP) was designed to arrest or accelerate a subject’s ankle to induce a trip or slip. The ankle was arrested posteriorly with an electromagnetic brake and accelerated anteriorly with a motor. A power spring was connected in series between the ankle and the brake/motor to allow freedom of movement (system transparency) when a fall is not being induced. A gait phase detection algorithm was also created to enable precise activation of the fall inducing mechanisms. Statistical Parametric Mapping (SPM1D) and one-way repeated measure ANOVA were used to evaluate the ability of the FIMP to induce a trip or slip. Results During FIMP induced trips, the brake activates at the terminal swing or mid swing gait phase to induce the lowering or skipping strategies, respectively. For the lowering strategy, the characteristic leg lowering and subsequent contralateral leg swing was seen in all subjects. Likewise, for the skipping strategy, all subjects skipped forward on the perturbed leg. Slip was induced by FIMP by using a motor to impart unwanted forward acceleration to the ankle with the help of friction-reducing ground sliding sheets. Joint stiffening was observed during the slips, and subjects universally adopted the surfing strategy after the initial slip. Conclusion The results indicate that FIMP can induce ecologically valid falls under controlled laboratory conditions. The use of SPM1D in conjunction with FIMP allows for the time varying statistical quantification of trip and slip reactive kinematics events. With future research, fall recovery anomalies in subjects can now also be systematically evaluated through the assessment of other neuromuscular variables such as joint forces, muscle activation and muscle forces.
When evaluating changes in knee kinetics and muscle activation together, this study demonstrated conflicting outcomes and questions the efficacy for the use of unloader bracing for people with normally aligned knees such as those after articular cartilage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.