Hydrogenated nanocrystalline silicon (nc-Si:H) films were deposited by using 13.56MHz plasma-enhanced chemical vapor deposition at 260°C by means of a silane (SiH4) plasma heavily diluted with hydrogen (H2). The high-quality nc-Si:H film showed an oxygen concentration (CO) of ∼1.5×1017at.∕cm3 and a dark conductivity (σd) of ∼10−6S∕cm, while the Raman crystalline volume fraction (Xc) was over 80%. Top-gate nc-Si:H thin-film transistors employing an optimized ∼100nm nc-Si:H channel layer exhibited a field-effect mobility (μFE) of ∼150cm2∕Vs, a threshold voltage (VT) of ∼2V, a subthreshold slope (S) of ∼0.25V∕dec, and an ON∕OFF current ratio of ∼106.
The authors report ultrahigh mobility nanocrystalline silicon thin-film transistors directly deposited by radio-frequency plasma enhanced chemical vapor deposition at 150°C. The transistors show maximum effective field effect mobilities of 450cm2∕Vs for electrons and 100cm2∕Vs for holes at room temperature. The authors argue that the key factor in their results is the reduction of the oxygen content, which acts as an accidental donor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.