Transgenic Bt crops produce insecticidal Cry proteins that are released to soil in plant residues, root exudates, and pollen and that may affect soil microorganisms. As a continuation of studies in the laboratory and a plant-growth room, a field study was conducted at the Rosemount Experiment Station of the University of Minnesota. Three Bt corn varieties that express the Cry1Ab protein, which is toxic to the European corn borer (Ostrinia nubilalis Hübner), and one Bt corn variety that expresses the Cry3Bb1 protein, which is toxic to the corn rootworm complex (Diabrotica spp.), and their near-isogenic non-Bt varieties were evaluated for their effects on microbial diversity by classical dilution plating and molecular (polymerase chain reaction-denaturing gradient gel electrophoresis) techniques and for the activities of some enzymes (arylsulfatases, acid and alkaline phosphatases, dehydrogenases, and proteases) involved in the degradation of plant biomass. After 4 consecutive years of corn cultivation (2003-2006), there were, in general, no consistent statistically significant differences in the numbers of different groups of microorganisms, the activities of the enzymes, and the pH between soils planted with Bt and non-Bt corn. Numbers and types of microorganisms and enzyme activities differed with season and with the varieties of corn, but these differences were not related to the presence of the Cry proteins in soil. The Cry1Ab protein of Bt corn (events Bt11 and MON810) was detected in most soils during the 4 yr, whereas the Cry3Bb1 protein was not detected in soils of Bt corn (event MON863) expressing the cry3Bb1 gene.
This chapter provides a brief overview of the agricultural context of cotton in Brazil, providing a broad perspective of the different geographical, social, ecological and economic circumstances under which cotton is cultivated. It covers the genetic diversity, geographical distribution, morphology, physiology and development of cotton and describes the species diversity associated with cotton in Brazil.It also describes the three main production areas in Brazil (which differ significantly in their topographical, climatic, ecological and socioeconomic characteristics), and the corresponding productivity, farming systems and economic status of the farmers in these areas. It identifies the main biological and socioeconomic constraints to cotton production and summarizes the main pest problems, contextualizing the target Lepidoptera within the broader pest complex. It introduces integrated pest management as a possible solution to pest problems.
The uptake of the insecticidal Cry1Ab protein from Bacillus thuringiensis (Bt) by various crops from soils on which Bt corn had previously grown was determined. In 2005, the Cry1Ab protein was detected by Western blot in tissues (leaves plus stems) of basil, carrot, kale, lettuce, okra, parsnip, radish, snap bean, and soybean but not in tissues of beet and spinach and was estimated by enzyme-linked immunosorbent assay (ELISA) to be 0.05 +/- 0.003 ng g(-1) of fresh plant tissue in basil, 0.02 +/- 0.014 ng g(-1) in okra, and 0.34 +/- 0.176 ng g(-1) in snap bean. However, the protein was not detected by ELISA in carrot, kale, lettuce, parsnip, radish, and soybean or in the soils by Western blot. In 2006, the Cry1Ab protein was detected by Western blot in tissues of basil, carrot, kale, radish, snap bean, and soybean from soils on which Bt corn had been grown the previous year and was estimated by ELISA to be 0.02 +/- 0.014 ng g(-1) of fresh plant tissue in basil, 0.19 +/- 0.060 ng g(-1) in carrot, 0.05 +/- 0.018 ng g(-1) in kale, 0.04 +/- 0.022 ng g(-1) in radish, 0.53 +/- 0.170 ng g(-1) in snap bean, and 0.15 +/- 0.071 ng g(-1) in soybean. The Cry1Ab protein was also detected by Western blot in tissues of basil, carrot, kale, radish, and snap bean but not of soybean grown in soil on which Bt corn had not been grown since 2002; the concentration was estimated by ELISA to be 0.03 +/- 0.021 ng g(-1) in basil, 0.02 +/- 0.008 ng g(-1) in carrot, 0.04 +/- 0.017 ng g(-1) in kale, 0.02 +/- 0.012 ng g(-1) in radish, 0.05 +/- 0.004 ng g(-1) in snap bean, and 0.09 +/- 0.015 ng g(-1) in soybean. The protein was detected by Western blot in 2006 in most soils on which Bt corn had or had not been grown since 2002. The Cry1Ab protein was detected by Western blot in leaves plus stems and in roots of carrot after 56 days of growth in sterile hydroponic culture to which purified Cry1Ab protein had been added and was estimated by ELISA to be 0.08 +/- 0.021 and 0.60 +/- 0.148 ng g(-1) of fresh leaves plus stems and roots, respectively. No Cry1Ab protein was detected in the tissues of carrot grown in hydroponic culture to which no Cry1Ab protein had been added. Because of the different results obtained with different commercial Western blot (i.e., from Envirologix and Agdia) and ELISA kits (i.e., from Envirologix, Agdia, and Abraxis), it is not clear whether the presence of the Cry1Ab protein in the tissues of some plants under field condition and in carrot in sterile hydroponic culture was the result of the uptake of the protein by the plants or of the accuracy and sensitivity of the different commercial kits used. More detailed studies with additional techniques are obviously needed to confirm the uptake of Cry proteins from soil by plants subsequently planted after a Bt crop.
This chapter discusses the following procedures for risk assessment in Bt cotton using the non-target risk assessment model developed by scientists of the GMO ERA Project ("International Project on GMO Environmental Risk Assessment Methodologies", which is a continuation of the GMO Guidelines Project, which was launched by scientists of the International Organization for Biological Control Global Working Group on "Transgenic Organisms in Integrated Pest Management and Biological Control"): (1) identify relevant functional groups of biological diversity associated with adverse effects, (2) list and prioritize species or ecological processes, (3) identify potential exposure pathways and adverse effects pathways, and use these to formulate and prioritize risk hypotheses, and (4) develop an analysis plan and suggest designs for experiments to test risk hypotheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.