Transgenic Bt crops produce insecticidal Cry proteins that are released to soil in plant residues, root exudates, and pollen and that may affect soil microorganisms. As a continuation of studies in the laboratory and a plant-growth room, a field study was conducted at the Rosemount Experiment Station of the University of Minnesota. Three Bt corn varieties that express the Cry1Ab protein, which is toxic to the European corn borer (Ostrinia nubilalis Hübner), and one Bt corn variety that expresses the Cry3Bb1 protein, which is toxic to the corn rootworm complex (Diabrotica spp.), and their near-isogenic non-Bt varieties were evaluated for their effects on microbial diversity by classical dilution plating and molecular (polymerase chain reaction-denaturing gradient gel electrophoresis) techniques and for the activities of some enzymes (arylsulfatases, acid and alkaline phosphatases, dehydrogenases, and proteases) involved in the degradation of plant biomass. After 4 consecutive years of corn cultivation (2003-2006), there were, in general, no consistent statistically significant differences in the numbers of different groups of microorganisms, the activities of the enzymes, and the pH between soils planted with Bt and non-Bt corn. Numbers and types of microorganisms and enzyme activities differed with season and with the varieties of corn, but these differences were not related to the presence of the Cry proteins in soil. The Cry1Ab protein of Bt corn (events Bt11 and MON810) was detected in most soils during the 4 yr, whereas the Cry3Bb1 protein was not detected in soils of Bt corn (event MON863) expressing the cry3Bb1 gene.
The Cry3Bb1 protein, insecticidal to the corn rootworm complex (Diabrotica spp.), of Bacillus thuringiensis (Bt) subsp. kumamotoensis was released in root exudates of transgenic Bt corn (event MON863) in sterile hydroponic culture (7.5 +/- 1.12 ng/ml after 28 days of growth) and in nonsterile soil throughout growth of the plants (2.2 +/- 0.62 ng/g after 63 days of growth). Kitchawan soil, which contains predominantly kaolinite (K) but not montmorillonite (M), was amended to 3 or 6% (vol./vol.) with K (3K and 6K soils) or M (3M and 6M soils) and with 1, 3, 5, or 10% (wt./wt.) of ground biomass of Bt corn expressing the Cry3Bb1 protein and incubated at 25 +/- 2 degrees C at the -33-kPa water tension for 60 days. Soils were analyzed for the presence of the protein every 7 to 10 days with a western blot assay (ImmunoStrip) and verified by ELISA. Persistence of the protein varied with the type and amount of clay mineral and the pH of the soils and increased as the concentration of K was increased but decreased as the concentration of M was increased. Persistence decreased when the pH of the K-amended soils was increased from ca. 5 to ca. 7 with CaCO(3): the protein was not detected after 14 and 21 days in the pH-adjusted 3K and 6K soils, respectively, whereas it was detected after 40 days in the 3K and 6K soils not adjusted to pH 7. The protein was detected for only 21 days in the 3M soil and for 14 days in the 6M soil, which were not adjusted in pH. These results indicate that the Cry3Bb1 protein does not persist or accumulate in soil and is degraded rapidly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.