The transforming protozoan Theileria recruits Plk1, a host kinase that regulates mitosis, to its surface and engages spindle microtubules to secure its division and inheritance into both daughter cells.
The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.
The intracellular protozoan parasite Theileria parva causes a lymphoproliferative disease of T cells in cattle and uncontrolled lymphocyte proliferation in culture. We have identified and characterized in infected cells the transcriptional activator, NF-KB, whose recognition motifs have been identified in several gene enhancers important for lymphocyte-specific gene expression. NF-KB is normally constitutively activated in nuclear extracts derived from B cells and can be induced in T cells and nonlymphoid cells by phorbol esters. Theileria-infected lymphocytes contained constitutively high levels of activated NF-KB in nuclear fractions and inactive NF-cB in cytoplasmic fractions. The inactive cytoplasmic precursor could be activated by treatment of extracts with deoxycholate, which was shown previously to dissociate NF-KcB from an inhibitor, IKcB. Treatment of lymphocyte extracts with 3 mM GTP stimulated NF-KB binding to its recognition motif in vitro, thereby distinguishing it from a related nuclear factor, H2-TF1. Selective killing of the parasite, which left the host cells intact, resulted in a rapid loss of NF-KB from the nuclear fractions and a slower loss from the cytoplasmic fractions. In parasitized cells, NF-KcB could not be further stimulated by treatment with 12-0-tetradecanoylphorbol-13-acetate whereas in cells treated to remove the parasite, this compound stimulated elevated levels of NF-KB. We propose that high levels of activated NF-KB are maintained by the presence of the parasite in infected T cells. Similarly, we propose that the high levels of inactive cytoplasmic precursor are a result of increased synthesis due to the presence of the parasite.
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-xL are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.