BackgroundBasic understanding of linkage disequilibrium (LD) and population structure, as well as the consistency of gametic phase across breeds is crucial for genome-wide association studies and successful implementation of genomic selection. However, it is still limited in goats. Therefore, the objectives of this research were: (i) to estimate genome-wide levels of LD in goat breeds using data generated with the Illumina Goat SNP50 BeadChip; (ii) to study the consistency of gametic phase across breeds in order to evaluate the possible use of a multi-breed training population for genomic selection and (iii) develop insights concerning the population history of goat breeds.ResultsAverage r2 between adjacent SNP pairs ranged from 0.28 to 0.11 for Boer and Rangeland populations. At the average distance between adjacent SNPs in the current 50 k SNP panel (~0.06 Mb), the breeds LaMancha, Nubian, Toggenburg and Boer exceeded or approached the level of linkage disequilibrium that is useful (r2 > 0.2) for genomic predictions. In all breeds LD decayed rapidly with increasing inter-marker distance. The estimated correlations for all the breed pairs, except Canadian and Australian Boer populations, were lower than 0.70 for all marker distances greater than 0.02 Mb. These results are not high enough to encourage the pooling of breeds in a single training population for genomic selection. The admixture analysis shows that some breeds have distinct genotypes based on SNP50 genotypes, such as the Boer, Cashmere and Nubian populations. The other groups share higher genome proportions with each other, indicating higher admixture and a more diverse genetic composition.ConclusionsThis work presents results of a diverse collection of breeds, which are of great interest for the implementation of genomic selection in goats. The LD results indicate that, with a large enough training population, genomic selection could potentially be implemented within breed with the current 50 k panel, but some breeds might benefit from a denser panel. For multi-breed genomic evaluation, a denser SNP panel also seems to be required.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0220-1) contains supplementary material, which is available to authorized users.
Background: Our aim was to identify genomic regions via genome-wide association studies (GWAS) to improve the predictability of genetic merit in Holsteins for 10 calving and 28 body conformation traits. Animals were genotyped using the Illumina Bovine 50 K BeadChip and imputed to the Illumina BovineHD BeadChip (HD). GWAS were performed on 601,717 real and imputed single nucleotide polymorphism (SNP) genotypes using a single-SNP mixed linear model on 4841 Holstein bulls with breeding value predictions and followed by gene identification and in silico functional analyses. The association results were further validated using five scenarios with different numbers of SNPs.Results: Seven hundred and eighty-two SNPs were significantly associated with calving performance at a genomewise false discovery rate (FDR) of 5%. Most of these significant SNPs were on chromosomes 18 (71.9%), 17 (7.4%), 5 (6.8%) and 7 (2.4%) and mapped to 675 genes, among which 142 included at least one significant SNP and 532 were nearby one (100 kbp). For body conformation traits, 607 SNPs were significant at a genome-wise FDR of 5% and most of them were located on chromosomes 5
Studies are being conducted on the applicability of genomic data to improve the accuracy of the selection process in livestock, and genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to identify genomic regions and genes that play roles in birth weight (BW), weaning weight adjusted for 210 days of age (WW), and long-yearling weight adjusted for 420 days of age (LYW) in Canchim cattle. GWAS were performed by means of the Generalized Quasi-Likelihood Score (GQLS) method using genotypes from the BovineHD BeadChip and estimated breeding values for BW, WW, and LYW. Data consisted of 285 animals from the Canchim breed and 114 from the MA genetic group (derived from crossings between Charolais sires and ½ Canchim + ½ Zebu dams). After applying a false discovery rate correction at a 10% significance level, a total of 4, 12, and 10 SNPs were significantly associated with BW, WW, and LYW, respectively. These SNPs were surveyed to their corresponding genes or to surrounding genes within a distance of 250 kb. The genes DPP6 (dipeptidyl-peptidase 6) and CLEC3B (C-type lectin domain family 3 member B) were highlighted, considering its functions on the development of the brain and skeletal system, respectively. The GQLS method identified regions on chromosome associated with birth weight, weaning weight, and long-yearling weight in Canchim and MA animals. New candidate regions for body weight traits were detected and some of them have interesting biological functions, of which most have not been previously reported. The observation of QTL reports for body weight traits, covering areas surrounding the genes (SNPs) herein identified provides more evidence for these associations. Future studies targeting these areas could provide further knowledge to uncover the genetic architecture underlying growth traits in Canchim cattle.
A population of 1398 Canchim (CA) cattle was genotyped to assess the association of an insulin-like growth factor 1 (IGF1) gene microsatellite with phenotypic variation and estimated breeding values of pre-weaning, weaning and post-weaning growth traits. After an initial analysis, the IGF1 genotype only had a significant effect (P < 0.05) on birth weight (BW) and weaning weight adjusted to 240 days (WW240). For these two traits, direct and maternal breeding values were estimated using the restricted maximum likelihood (reml). Two analyses were carried out. In the first (Model I), all fixed effects were fitted. In the second (Model II), the fixed effect of the IGF1 genotype was omitted. The estimated genetic and phenotypic components of variance were similar for every trait in both models. For Model I, estimated direct and maternal heritabilities were 0.26 and 0.16 for BW and 0.23 and 0.14 for WW240 respectively. The genetic and phenotypic correlations between BW and WW240 were 0.38 and 0.38 (Model I) and 0.19 and 0.38 (Model II) respectively. Fifty animals were classified according to their direct and maternal breeding values for both traits. Spearman rank-order correlation between animal rankings in the two models was used to assess the effect of including the IGF1 genotype in the model. Non-significant values from this correlation were indicative of a difference in breeding value rankings between the two approaches. The IGF1 gene was found to be associated with phenotypic variation and breeding values in the early phase of growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.