Peculiarities of electric current distribution in an anisotropic electrically conductive medium are considered and dependences of its longitudinal and transverse components on geometrical factors are established. In the case of a rectangular plate of length a, height b, and width c, the selected crystallographic axes are located in the plane of the side face (a × b), and one of these axes is oriented at an angle α to the edge α. Application to the upper and lower end faces of the plate of some potential difference leads to the appearance of longitudinal and transverse components of the flowing electric current. This leads to the possibility of transforming the electric current magnitude. The methods of optimizing the transformation coefficient magnitude which is determined by both the magnitude of the anisotropy of the electrical conductivity of the plate material and the coefficient of its shape k = a/b. The design variants of anisotropic electrically conductive transformers are proposed. The use of this transformation effect makes it possible to expand the practical use of electroohmic phenomena. This principle of transformation will expand the areas of its use in metrology and measurement technology.
The authors consider the aspects of electric current distribution in electrically conductive anisotropic medium and establish how geometrical factors affect its longitudinal and transverse components. In the case of an a×b×с rectangular plate, its selected crystallographic axes are located on the plane of the side face a×b, whereas one of these axes is oriented at an angle α to the edge a. Applying a certain potential difference to the upper and lower end faces of the plate causes the appearance of longitudinal and transverse components of the internal electric current. The paper demonstrates the possibility of transforming the magnitude of the electric current and a way to optimize this magnitude. The transformation coefficient of such a device is determined by the anisotropy of the electrical conductivity of the plate and the coefficient of its shape k = a/b. The authors consider a few versions of anisotropic dielectric transformer design and offer their equivalent electric circuits. Another suggested transformer design is spiral in shape, compact and is characterized by high transformation coefficient value n. For example, at external radius r1 = 12,5 mm, internal radius r2 = 2 mm, height b = 2 mm and plate thickness c = 2,0 mm, its transformation coefficient n = 103. The information is given on existing monocrystalline and artificial anisotropic materials that can be used for the proposed device. High-temperature superconducting materials characterized by a high value of residual resistance anisotropy hold special promise in this case. Using the described transformation effect will significantly expand the possibilities of practical application of the considered electroohmic phenomenon. This will lead to the emergence of a new generation of devices for microwave technology, electronics and power engineering.
The authors consider the aspects of the electric field distribution in an anisotropic medium and establish how its longitudinal and transverse components depend on the geometric factors. A rectangular plate of dimensions a×b×c is studied, its selected crystallographic axes located in the plane of the side face (a×b), while one of the axes is oriented at a certain angle α to the edge a. It is shown that applying a certain potential difference to the upper and lower faces electrically polarizes the volume of the plate and causes the appearance of the longitudinal and transverse components of the internal electric field. The authors investigate the possibility of transforming the magnitude of the electric field and methods for its optimization. The transformation coefficient of such a device is determined by the anisotropy of the dielectric permeability of the plate material and its shape coefficient k = a/b. The paper considers one of the design options for an anisotropic dielectric transformer and proposes its equivalent electrical circuit. Structural elements based on anisotropic dielectric transformers may be widely used both in power supplies of various electronic devices and for coordination of radar transceiver systems with antenna arrays of centimeter, millimeter and submillimeter wavelength ranges. The possibility of simultaneous transformation of constant and alternating electric fields allows them to be used in devices of simultaneous comparison, enabling to determine the current values of voltage, as well as the power of electromagnetic radiation in a wide range of wavelengths. The vortex nature of the electric field in the plate’s volume caused by the coefficient anisotropy of the dielectric permeability also creates the preconditions for the emergence of new principles for generating high-power electromagnetic radiation in a wide spectral range. The generation frequency of such devices is determined by the geometric dimensions of the anisotropic plate. The use of the described transformation effect will significantly expand the possibilities of practical application of the considered electrostatic phenomena, which will lead to the emergence of a new generation of devices for microwave technology, electronics and electric power.
The peculiarities of magnetic field propagation in an anisotropic magnetic medium are considered and the dependences of the longitudinal and transverse components of the magnetic field on the geometric dimensions are established. For the first time, the possibility of concentrating the magnitude of the magnetic field has been shown and its value has been optimized. A model of an anisotropic magnetic concentrator is developed, and a method for creating artificial anisotropic classical materials is proposed. The application of this method of the magnetic field concentration makes it possible to increase the sensitivity of photo-, thermomagnetic detectors and the efficiency of galvano-thermomagnetic coolers, as well as electromagnetic and magnetoelectric measuring systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.