Resistivity transients of tin oxide films at step isothermal changes in oxygen pressure are investigated. It is expected that, after exposing the samples to oxygen, the resistivity would increase monotonically as barriers become higher to finally reach a plateau at steady state. Here we present experimental results showing a nonmonotonic resistivity transient response that cannot be explained by only considering changes in the Schottky barrier heights. We provide an explanation based on the effects of intragrain oxygen diffusion that accounts for the observed main features of conduction in this polycrystalline material. Oxygen diffuses into the grains annihilating vacancies; the donor concentration is then reduced affecting the sample conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.