Abstract.A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, T g , homogeneous ice nucleation temperatures, T hom , and ice melting temperatures, T m , of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulfate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show T g values that are too low to be of atmospheric importance. In contrast, aqueous organic and multicomponent solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher T g of their respective solutions at a given water activity. To a lesser extent, T g also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger ( 150 g mol −1 ) and more hydrophobic organic molecules are more likely to form glasses at interCorrespondence to: T. Koop (thomas.koop@uni-bielefeld.de) mediate to high relative humidities in the upper troposphere. Our results suggest that the water uptake of aerosols, heterogeneous chemical reactions in aerosol particles, as well as ice nucleation and ice crystal growth can be significantly impeded or even completely inhibited in organic-enriched aerosols at upper tropospheric temperatures with implications for cirrus cloud formation and upper tropospheric relative humidity.
Abstract. The physical phase state (solid, semi-solid, or liquid) of secondary organic aerosol (SOA) particles has important implications for a number of atmospheric processes. We report the phase state of SOA particles spanning a wide range of oxygen to carbon ratios (O / C), used here as a surrogate for SOA oxidation level, produced in a flow tube reactor by photo-oxidation of various atmospherically relevant surrogate anthropogenic and biogenic volatile organic compounds (VOCs). The phase state of laboratory-generated SOA was determined by the particle bounce behavior after inertial impaction on a polished steel substrate. The measured bounce fraction was evaluated as a function of relative humidity and SOA oxidation level (O / C) measured by an Aerodyne high resolution time of flight aerosol mass spectrometer (HR-ToF AMS).The main findings of the study are: (1) biogenic and anthropogenic SOA particles are found to be amorphous solid or semi-solid based on the measured bounced fraction (BF), which was typically higher than 0.6 on a 0 to 1 scale. A decrease in the BF is observed for most systems after the SOA is exposed to relative humidity of at least 80 % RH, corresponding to a RH at impaction of 55 %. (2) Long-chain alkanes have a low BF (indicating a "liquid-like", less viscous phase) particles at low oxidation levels (BF < 0.2 ± 0.05 for O / C = 0.1). However, BF increases substantially upon increasing oxidation. (3) Increasing the concentration of sulphuric acid (H 2 SO 4 ) in solid SOA particles (here tested for longifolene SOA) causes a decrease in BF levels. (4) In the majority of cases the bounce behavior of the various SOA systems did not show correlation with the particle O / C. Rather, the molar mass of the gas-phase VOC precursor showed a positive correlation with the resistance to the RH-induced phase change of the formed SOA particles.
Abstract. A new process is presented by which water-soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulphate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulphate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg-values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger and more hydrophobic organic molecules (≳150 g mol-1) are more likely to form glasses at intermediate to high relative humidities in the upper troposphere. Our results suggest that the water uptake of aerosols, heterogeneous chemical reactions in aerosol particles, as well as ice nucleation and ice crystal growth can be significantly impeded or even completely inhibited in organic-enriched aerosols at upper tropospheric temperatures with implications for cirrus cloud formation and upper tropospheric relative humidity.
The physical phase state (solid, semi-solid, or liquid) of secondary organic aerosol (SOA) particles has important implications for a number of atmospheric processes. We report the phase state of SOA particles spanning a wide range of oxygen to carbon ratios (O/C), used here as a surrogate for SOA oxidation level, produced in a flow tube reactor by photo-oxidation of various atmospherically relevant surrogate anthropogenic and biogenic volatile organic compounds (VOCs). The phase state of laboratory-generated SOA was determined by the particle bounce behavior after inertial impaction on a polished steel substrate. The measured bounce fraction was evaluated as a function of relative humidity and SOA oxidation level (O/C) measured by an Aerodyne high resolution time of flight aerosol mass spectrometer (HR-ToF AMS). <br><br> The main findings of the study are: (1) Biogenic and anthropogenic SOA particles are found to be solid or semi-solid until a relative humidity of at least 50 % RH at impaction is reached. (2) Long-chain alkanes produce liquid SOA particles when generated at low oxidation level of O/C<0.2, but at higher oxidation levels they solidify. (3) Increasing sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) within the SOA particles reduces the threshold of humidity-induced phase changes. (4) The bounce behavior of the various SOA systems did not show a consistent linear relationship with the particle O/C. Rather, the molar mass of the gas-phase VOC precursor showed a positive correlation with the resistance to the RH-induced phase change of the formed SOA particles
The onset of the aggregation process of frozen droplets was investigated in laboratory settings. The experiments were conducted in a cloud chamber controlled at temperatures cooler than −40°C, where pure water droplets freeze spontaneously without the need for ice nucleating particles. We present laboratory evidence supporting that the aggregation process can occur for frozen droplet sizes around 10 μm in diameter and at concentrations observed in the cloud chamber of 70 ± 20 cm−3, which can be found in some regions of anvil cirrus. The characteristics and morphology of the aggregates were examined in detail. Additional experiments performed with electrically charged droplets show that the aggregation processes can be significantly accelerated, suggesting that the mechanism of collision and adhesion could be related to electrical forces generated by different charge distributions or dipole interactions between the interacting ice surfaces. The current work aims at advancing our fundamental understanding of the aggregation process of frozen droplets, which is necessary for understanding the cloud microphysical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.