This paper discusses different types of Ulam stability of first-order nonlinear Volterra delay integro-differential equations with impulses. Such types of equations allow the presence of two kinds of memory effects represented by the delay and the kernel of the used fractional integral operator. Our analysis is based on Pachpatte’s inequality and the fixed point approach represented by the Picard operators. Applications are provided to illustrate the stability results obtained in the case of a finite interval.
This article discusses several forms of Ulam stability of nonlinear fractional delay differential equations. Our investigation is based on a generalised Gronwall’s inequality and Picard operator theory. Implementations are provided to demonstrate the stability results obtained for finite intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.