A flow system for the production of stable, reproducible batches of silver colloid for use as substrates for surface-enhanced resonance Raman spectroscopy (SERRS) is described. The colloids were prepared by borohydride reduction of silver nitrate and subsequent stabilization was achieved by adding trisodium citrate. The batches of colloid produced were analyzed using UV-visible spectroscopy and their suitability for use as SERRS substrates was assessed using 3,5-dimethoxy-4-(5′-azobenzotriazole)phenylamine as the analyte. SERRS analysis was carried out using a flowcell. Using the method described, batches of silver colloid were prepared that were stable for at least five months and when used as SERRS substrates resulted in a relative standard deviation in SERRS intensity of 3,5-dimethoxy-4-(5′-azobenzotriazole)phenylamine of 6.6% between colloid batches. The robustness of the system for production of stable, reproducible colloids was assessed using experimental design. The final method proposed enables reproducible, time-stable colloid to be made in a simple manner, thus eliminating one of the major problems associated with the use of SERRS detection in analytical procedures.
A novel sensor based upon surface-enhanced Raman scattering (SERS) has been constructed by immobilizing colloidal silver particles onto the distal end of an optical fiber. This same single fiber was then used to both transport the exciting laser radiation and collect the Raman scattering from analytes sorbed onto the colloidal particles. The colloidal particles were immobilized by functionalization of the end of the optical fiber with (3-aminopropyl)trimethoxysilane prior to immersion of the fiber in silver colloid. Spectra were obtained from both 4-(5′-azobenzotriazol)3,5-dimethoxyphenylamine and crystal violet. The within-batch variation of a set of five fibers has been measured as approximately 10%. Raman imaging experiments demonstrated that the effects due to spatial variations in the intensity of the SERS recorded over the distal end of the fiber are removed by the use of a multimode fiber.
Factors that affect quantitative analysis by surface-enhanced resonance Raman scattering (SERRS) have been investigated using azobenzotriazol and reactive dyes. Preaggregation of the silver colloid was the most effective method to obtain repeatable and reproducible scattering. Aggregation by poly(l-lysine) or spermine provided better precision than aggregation by sodium chloride or nitric acid. Repeatable quantitative analysis was achieved with the azobenzotriazol dyes. A linear calibration graph was obtained over different concentration ranges below 10(-)(8) M, depending on the nature of the colloid. Calculations estimate that 10(-)(8) M is the concentration at which monolayer coverage of the dye on the silver colloid is achieved. Above 10(-)(8) M, there was only a minor increase in the scattering intensity from the azobenzotriazol dyes. In contrast, the reactive dyes did not give a response proportional to concentration over the range studied. The different responses obtained for the two types of dye are believed to be caused by differences in the nature of the interaction of the molecules with the silver surface. The conclusion reached is that control of the colloid preparation, aggregation process, and surface chemistry are essential for successful quantitative analysis of dyes on colloidal silver by SERRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.